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Component-based robot software frameworks, such as the Robot Operating System (ROS), allow developers

to quickly compose and execute systems by focusing on configuring and integrating reusable, off-the-shelf

components. However, these components often lack documentation on how to configure and integrate them

correctly. Even when documentation exists, its natural language specifications are not enforced, resulting

in misconfigurations that lead to unpredictable and potentially dangerous robot behaviors. In this work,

we introduce ROSpec, a ROS-tailored domain-specific language designed to specify and verify component

configurations and their integration. ROSpec’s design is grounded in ROS domain concepts and informed by a

prior empirical study on misconfigurations, allowing the language to provide a usable and expressive way of

specifying and detecting misconfigurations. At a high level, ROSpec verifies the correctness of argument and

component configurations, ensures the correct integration of components by checking their communication

properties, and checks if configurations respect the assumptions and constraints of their deployment context.

We demonstrate ROSpec’s ability to specify and verify components by modeling a medium-sized warehouse

robot with 19 components, and by manually analyzing, categorizing, and implementing partial specifications

for components from a dataset of 182 misconfiguration questions extracted from a robotics Q&A platform.
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1 Introduction
Component-based robot software allows developers to quickly compose and deploy their system

by integrating reusable components [4]. Indeed, in recent years several frameworks, such as

CARMEN [60], OROCOS [8], YARP [59], and the Robot Operating System (ROS) [69] have been

introduced to improve robotics development. Among these, ROS has become the de facto open-

source framework for developing robot software, with its consortium including large industry

companies such as Bosch, CAT, and Microsoft [74].
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ROS is a framework built on top of Linux, which allows developers to focus on integrating and

configuring reusable, off-the-shelf components [26, 46]. These components are processes that receive,
process, and may produce information to other components. For example, the ROS ecosystem

provides components for performing autonomous navigation, detecting obstacles and pedestrians,

and translating motion sequences into motor commands [18, 19]. Developers often attempt to

configure and integrate these components by searching for documentation and manually inspecting

and understanding the components’ source code.

However, these components often lack documentation on their usage, preventing their correct

configuration [1, 26, 33]. Components are often configured through source code and several config-

uration files scattered around the system. Furthermore, as ROS-based systems are composed of

dozens of different undocumented components with dependencies between each other, it becomes

difficult to understand the overall architecture and configuration of the system.

Therefore, developers often have to rely on implicit and unverified assumptions, which may

lead to misconfigurations [13]. Misconfigurations in ROS result from mismatched expectations and

guarantees when configuring and integrating different components. For instance, components may

only be used when the system is executed in specific environments,
1
or expectations regarding

data are different between components — a component may provide RGB images, while another

expects grayscale images, leading to color format misconfigurations.
2

As systems that interact with the physical world, ensuring correct component configuration and

integration prior to execution is critical to preventing unpredictable and dangerous robot behaviors.

In this work, we introduce ROSpec, a ROS-tailored domain-specific language for specifying

component configuration and integration. ROSpec abstracts away source-code implementation

details and verifies correct component configuration and integration at the architectural level across

specification files. Since ROS is the most widely adopted robotics framework, we use it as a proxy

for broader component-based robot software development.

Domain-specific languages (DSL) have emerged as a promising approach for describing and

specifying user intent about system architectures across various domains, including cloud com-

puting [6], robotics [62], and cyber-physical systems [86]. Within the domain of robotics, DSLs

have allowed developers to express and verify correct component interconnections [36, 61, 64, 89],

real-time requirements [24, 30, 54, 57, 70], and hardware-software relationships [30, 78, 89]. How-

ever, the successful adoption of these languages in specific domains depends on several critical

factors [43]. A language must be sufficiently expressive to allow developers to specify their architec-

ture accurately [43], provide domain specialization to facilitate description [90], offer intuitive and

comprehensible syntax [58], and maintain an appropriate level of abstraction that aligns with devel-

opers’ understanding of the system [90]. However, to the best of our knowledge, no prior work has

designed such a language that addresses these requirements to detect ROS-based misconfigurations.

We design ROSpec by using ROS-related concepts and studying misconfigurations identified

in prior empirical work [13]. This allows the language to be expressive through the modeling of

core domain concepts and the use of established programming language concepts, i.e., liquid and

dependent types [73, 91]. In fact, ROSpec extends liquid types beyond their traditional application

in executable languages like Haskell [84], LiquidJava [31], and Flux [49], by also allowing specifica-

tions over component configurations and the system’s architecture by restricting their connections.

ROSpec specifications considers two different stakeholders, addressing the concerns of each of

them: component writers who intend to specify their component’s semantics, and component inte-

grators who expect the correct configuration and integration of their components. We demonstrate

1
https://answers.ros.org/question/185909

2
https://answers.ros.org/question/201031
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ROSpec’s abilities by modeling a medium-sized warehouse robot system and manually studying

and describing partial component specifications from a dataset of 182 questions from ROS Answers,

a Q&A platform similar to Stack Overflow.

In this work, we make the following contributions:

• The derivation of properties for ROS-based systems from studying prior work (Section 3);

• The introduction of ROSpec, a novel specification language that leverages domain-specific

concepts and misconfiguration-related properties (Section 4);

• The formal definition of ROSpec’s syntax and checking rules that use liquid types to restrict

components configurations and their connection integration (Section 5);

• The evaluation of the language’s expressivity by specifying a medium-sized robot case study

(Section 6.1) and writing partial specifications of misconfigured components (Section 6.2).

2 Background and Motivating Example
In this section, we provide an overview of the ROS architecture and community dynamics governing

how developers create, configure, and integrate components from its ecosystem. We present the

challenges that occur during configuration and integration that lead to misconfigurations.

ROS primarily provides a publish–subscribe architecture based on nodes and topics for inter-
component communication [77]. Nodes process messages received as inputs and may produce

new messages to topics — named channels for exchanging messages. ROS also supports other

communicationmodels, such as synchronous and asynchronous remote procedure calls (i.e., services

and actions). This loosely coupled architecture allows the runtime definition of interfaces, making

it easier for developers to create and integrate configurable components into a working system.

Indeed, ROS’s key advantage is its rich ecosystem of reusable components, allowing developers

to focus on configuration and integration rather than implementing components from scratch. For

instance, the Navigation Stack [19] supports autonomous navigation (e.g., planning, motion control,

and localization); MoveIt! [18] performs motion planning and manipulation; and ROS Control [17]

provides control algorithms and an interface for interacting with robot actuators. Developers rely

on configuration to adapt such components to the requirements of their system.

Within the ROS community, we observe two primary types of developers involved in component

creation and configuration: component Writer and Integrator . A component writer creates

reusable packages composed of multiple nodes, focusing on having generic components that allow

easy configuration by integrators. These developers contribute their components to the community,

expecting its correct configuration and integration. A component integrator selects and adapts

these components to meet specific system requirements while ensuring that configurations match

the assumptions about their correct usage.

To develop their systems, ROS provides a C/C++ and Python API that abstracts low-level inter-

component communication details. Here, developers can define what components are used and

configure them using configuration files. Component configuration involves a combination of

launch and parameter configuration files, where developers define parameter values like topic

names, robot’s physical configurations (e.g., URDF), and algorithm configurations [56]. These

configurations often depend on the robot’s operating environment, hardware setup, and task.

However, due to multiple layers of indirection, developers often have to manually search source

code and dozens of launch and parameter files to understand which configurations are relevant and

how the component integrates into the system’s overall architecture. For instance, Autoware.AI,
3

one of the largest and most complex ROS autonomous systems, contains 230 components.

3
https://github.com/autowarefoundation/autoware

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 391. Publication date: October 2025.

https://github.com/autowarefoundation/autoware


391:4 Canelas, Schmerl, Fonseca, and Timperley

object_detector

Node Topic
Publish port

airdrone_driver

Subscribe port

Legend

/front/image_raw

Frame: provided image has not the same size 
as the camera model or image is not grayscale

airdrone_autonomy pkg

source launch param.

Fig. 1. Example of a misconfigured publisher-subscriber in ROS.4 The airdrone_driver is composed of
multiple source code, launch and parameter files. The subscriber expects grayscale images, but colored (RGB)
images are provided. A possible solution is to introduce a node that converts colored images to grayscale.

Correctly configuring and integrating these components is critical, as configuration errors, or

misconfigurations [2, 15, 63, 80], may potentially result in dangerous behaviors of the system when

interacting with its environment. Misconfigurations arise from semantic mismatches in components’

usage, which are often detected late in the development pipeline, during field testing, or even

deployment [1]. For instance, Figure 1 presents a structural architectural view of the integration of

two components. The airdrone_driver publishes colored camera images to "/front/image_raw",
while the object_detector subscribes to and processes image messages from this topic, allowing

the system to avoid obstacles. However, the integration of both components leads to a color-format

misconfiguration, where the subscriber assumes all images received are in grayscale while the

publisher provides colored images, removing the drone’s ability to avoid obstacles.

While ROS’s promise of reusability through architectural decoupling may accelerate prototyping,

the tradeoff is that integrators are responsible for properly managing, configuring, and integrating

dozens, if not hundreds, of components whose documentation is often missing [1, 26, 81], or when

existing, is not enforced. This requires integrators to have a deep understanding of components,

read the documentation (when available), and carefully provide configurations to have a working

system, hampering this promise of reusability. ROSpec addresses these challenges by providing

writers a language to specify the semantics of their components and integrators to instantiate them,

ensuring the correct configuration and integration of components.

3 Language Properties
To address these challenges, we design ROSpec by leveraging core ROS concepts, allowing de-

velopers to specify familiar domain-specific concepts. Additionally, we derive and incorporate

properties from known sources of misconfigurations into the language, allowing developers to

specify constraints over their components. In this section, we present our methodology for collect-

ing relevant ROS domain concepts and deriving properties, informed by a prior empirical study in

misconfigurations, and its respective threats to validity.

3.1 Methodology
Our methodology adapts a prior work’s approach for language design that identifies properties from

the analysis of developer errors [20]. We begin by collecting ROS domain knowledge and categories

of misconfigurations. Then, we express the properties that model the collected knowledge. Figure 2

outlines our methodology for collecting ROS concepts and defining properties components must

hold for their correct configuration and integration. We describe each step as follows.

4
https://answers.ros.org/question/201031
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Fig. 2. Methodology for designing ROSpec based on ROS concepts and misconfiguration properties for
ROS-based robotic systems. We begin by collecting ROS domain knowledge and information on domain
knowledge and misconfigurations, using prior work in misconfigurations [13]. Then, we derive and iteratively
refine properties from the collected knowledge. Finally, we design and formalize the specification language.

We started by identifying the core concepts defined in the documentation of ROS 2, the current

version of ROS, as ROS 1 reached end of life. For the remainder of this paper, when using ROS

we refer to ROS 2. We manually collected the primary concepts from an official page with ROS

concepts [56],
5
providing a glossary of domain concepts and their respective description.

The second source of knowledge comes from a prior empirical study on ROS misconfigura-

tions [13]. By collecting and analyzing this study, we design the language to express properties

able of detecting real-world misconfigurations. We review the work on ROS misconfigurations [13],

which categorizes 12 high-level categories and 50 sub-categories of misconfigurations encountered

by developers when configuring ROS systems in ROS Answers, a StackOverflow for ROS ques-

tions. At a high level, their study identified cyber-physical misconfigurations (e.g., hardware and

operating environment), architectural issues related to components integration, communication

timing assumptions, and configuration issues in launch and parameter files. As ROS and other

component-based robotics frameworks share these overall concepts, we expect our findings to

generalize beyond ROS, though further study is needed.

Domain Knowledge and Misconfigurations. Table 1 lists 12 core ROS domain concepts and their

descriptions. We focus on the concepts most relevant to developers [77], such as nodes, topics, and

publisher-subscriber. This allows ROSpec to specify standard yet core ROS elements while future

extensions can support more complex or uncommon concepts.

Overall, the concepts can be grouped into four categories: (i) components and their configurable

information and dependencies ( Node , Parameter , Argument , and Plugin ), (ii) communication

models with respective topics, messages, and settings ( Publisher-Subscriber , Services , Topic ,

Message , Quality of Service , and Actions ), (iii) TF Frames and TF Broadcast/Listen , and (iv)

Remapping , which allows renaming and reusing components in their system.

Properties Definition. Table 2 presents a set of 14 configuration and integration properties that

causemisconfigurations whenever violated in ROS-based systems. Each property describes a specific

condition that must hold for a configuration, allowing us to ensure the correct configuration.

Properties are natural language specifications that describe assumptions about component

configurations and their integration. We manually defined a property for each misconfiguration,

considering the domain concepts collected in the prior stage, to address each high-level category and

sub-category of misconfiguration. Then, we evaluate the existing set of properties and either create

5
https://docs.ros.org/en/jazzy/index.html
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Table 1. Overview of the main domain-specific concepts in ROS 2, including their names and descriptions,
used in ROSpec to describe the configuration and integration of ROS components.

Domain Concept Description

Node
Process that may receive an input, process information and produce an output.

Nodes use plugins, and contain required & optional arguments and parameters.

Topic
Named buses over which components exchange messages. Nodes communicate

with each other by sending and receiving messages from topics.

Publisher-Subscriber
A decoupled communication where nodes publish and receive messages from

topics. Publisher-subscriber connections are defined when, at the source-code

level, there is a creation of a publisher or subscriber from a node to a topic.

Service & Action

Client-server communication model based on requests and responses. Com-

ponents send a request message to another component that processes it and

provides a response. Services provide synchronous communication, while ac-

tions are asynchronous and provide feedback and task preemption.

Parameter
Named configuration values used by nodes to change components behavior at

runtime. Parameters can be declared and accessed dynamically during execution.

Argument

Command-line inputs provided when launching components (e.g., nodes) or exe-

cuting ROS 2 commands. Arguments allow developers to dynamically configure

nodes by changing default values, selecting parameter or launch files to load, or

controlling conditional logic, such as whether to include specific components.

Messages
Define the structure of data containing typed fields used in topics. Services and

action message fields contain request and response, and also feedback fields.

Plugin
Dynamically loaded and used by nodes to extend application behavior without

requiring application source code. These provide the same functionality as nodes,

containing arguments, parameters, connections, and frames.

TF Frames
Coordinate reference frames used to represent positions and orientations of robot

parts or environment. These are required for maintaining spatial relationships

over time, allowing components to interpret data in a shared coordinate system.

TF Broadcast/Listen
Transform broadcast sends the relative position and orientation between two

frames. Components may subscribe to broadcasted transforms in the system

and save these frames positions over time.

Remapping
Change of nodes, arguments, parameters, and topics names at runtime without

changing the code, allowing component reuse in different contexts.

Quality of Service
Policies that define how nodes transmit data over topics, including reliability,

durability, and latency. QoS settings must be compatible between publishers

and subscribers to ensure correct communication.

new properties or refine existing ones. As the categories of misconfigurations are not mutually

exclusive, the continuous refinement ensured the collection of a minimal yet comprehensive

set of properties. The refinement process involved meetings among three authors, experts in

robotics, software architecture, and programming languages, to ensure that these represent relevant

properties that capture the domain’s architectural nature. This process resulted in a set of properties

that captures both domain concepts and categories of misconfigurations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 391. Publication date: October 2025.
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Table 2. Overview of configuration and integration properties, including their identifiers and descriptions,
used to detect misconfigurations in ROS-based systems.

Property Description

Typing The provided values for arguments and parameters respect the configuration type.

Bounds
The provided values for arguments and parameters respect the bounds in types expected

in the configuration documentation.

Dependency
The value dependencies between arguments, parameters, context and publisher-

subscriber connections respect the expected configuration documentation.

Presence The arguments and parameters required in the configuration definition are provided.

Consistency
The arguments and parameters defined in the configuration exist in the set of arguments

and parameters expected.

Conditionals
The definition of specific arguments and parameters values depends on the existence of

a value definition of other configurations.

Connection
The components who subscribe/consume information from topics, expect a publish-

er/producer providing messages to that topic.

Message
Themessage types provided by publishers and servers are equivalent to the ones expected

by subscribers and clients.

Fields
The content of messages fields provided by publishers and servers is less restrictive than

the one expected by subscribers and clients.

Cardinality
The number of publishers/providers and subscribers/consumers for a connection to a

topic respects the expected in the configuration.

Context
The context of deployment scenario where the component executes matches the expected

in the documentation.

TF-Listen Components listening to a TF transform expects a respective broadcasting transform.

TF-Graph
For all TF transforms by a component with a parent to a child, each child frame expects

to contain one parent frame.

QoS
The publisher-subscriber, service and action connections to a topic respect the Quality

of Service (QoS) settings defined in the documentation.

3.2 Threats to Validity
External Validity. Our work uses ROS 2 as a proxy for general-purpose component-based robotic

systems.While ROS 2 is widely adopted in both academia and industry, the specific domain concepts

and misconfigurations identified may not generalize to other robotic middleware or architectures

(e.g., YARP, OROCOS). Nonetheless, our methodology is designed to be adaptable: the language and

properties can be instantiated over different domain models by redefining the relevant concepts

and misconfiguration categories. Future work is needed to validate this generalizability.

Internal Validity.We identify three main threats to the internal validity of our methodology. First,

a single author collected the initial set of domain concepts and categories of misconfiguration, which

may miss relevant information. We mitigated this with the collaboratively review and refinement

with the other three co-authors. Second, the analysis of misconfigurations relies primarily on a

single empirical study, which, although comprehensive, may not capture the deeper details for each

specific category of misconfiguration identified in other works. Third, the ROS Answers dataset used

in prior work does not distinguish between ROS 1 and ROS 2, potentially introducing inconsistencies

in howmisconfigurations are mapped to the ROS 2 domain. However, as the architectural differences

between ROS 1 and ROS 2 are minimal, we believe our properties generalize to both versions.

Construct Validity. The primary threat to construct validity regards the definition of ROS archi-

tectural concepts. For example, a publisher connection may be interpreted either as a connection

between a node and a topic at the source-code level or as only when a message is published at

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 391. Publication date: October 2025.
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runtime. In ROSpec, since the goal is to describe the configuration and integration of components

from a static architectural view, we adopt the former interpretation, based on prior work [79].

4 ROSpec Design
Based on the domain concepts and the misconfiguration properties, we now present the syntax of

ROSpec, using examples derived from real-world misconfigurations documented in ROS Answers
6

(now migrated to Robotics Stack Exchange),
7
a Q&A platform similar to StackOverflow for ROS

developers. For each specification example, we identify the primary stakeholder responsible for

defining the specification ( Writer or Integrator ), the main ROS concepts used ( Concept ), and

the corresponding misconfiguration property ( Property ).

4.1 Node Definitions and Respective Parameter Refinements and Dependencies

1 node type move_group_type {
2 param elbow_joint/max_acceleration: double where {_ >= 0};
3 param elbow_joint/min_velocity: double;
4

5 optional param elbow_joint/max_velocity: double = 1.2211;
6 optional param elbow_joint/has_velocity_limits: bool = false;
7 optional param elbow_joint/has_acceleration_limits: bool = false;
8 } where {
9 exists(elbow_joint/max_velocity) -> elbow_joint/has_velocity_limits;
10 }

Listing (1) Writer specification of the move_group node, fromMoveIt! [18], responsible for motion planning,
kinematics, and execution of robotic manipulators trajectories ( Node , Parameter ).

11 system {
12 node instance move_group: move_group_type {
13 param elbow_joint/max_acceleration = 0.0;
14 param elbow_joint/min_velocity = 0.0;
15 param elbow_joint/max_velocity = 3.14;
16 }
17 }

Listing (2) Integrator configuration of the move_group node. The parameter has_velocity_limits
is defined in the node type as false, which is incompatible with the definition of the max_velocity
parameter. Without detection, the default value is used instead of 3.14. ( Typing , Bounds , Dependency ,

Presence ).8

In ROS, nodes are the first-class elements that receive, process, and send information. Nodes

are responsible for starting communication channels, such as publishing and subscribing to topics,

and providing or consuming services or actions. Nodes can be dynamically parameterized with

arguments (during system execution) or in parameter files. As both arguments and parameters lead

to misconfigurations, we support their specification within a node.

Listing 1 presents an example of a partial specification for a node type, move_group_type, created
from a question with a real-world issue asked on ROS Answers. The move_group_type node

6
http://answers.ros.org

7
https://robotics.stackexchange.com

8
https://answers.ros.org/question/364801
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type, part of MoveIt!, is responsible for motion planning and trajectory execution for robotic

manipulators. A Writer can specify their components by describing their configurable information

(i.e., parameters, arguments, and contextual information (Section 4.5)), their connections (e.g.,

publisher-subscriber) and conditions that define dependencies between the defined information.

Parameters can be specified as required or optional with a default value, as in ROS, and are typed.

Required parameters, such as elbow_joint/max_acceleration, must be provided when creating a

node instance. Optional parameters like elbow_joint/has_velocity_limits include default values
(false), which are used when not defined. Optional parameters not defined during instantiation,

are inherited by the instance. Parameters have a name, which may include a namespace, i.e., a

prefix that groups nodes, topics, and parameters, preventing naming conflicts.

In ROSpec, Writer can encode semantic information regarding their parameters through the

use of liquid types [31, 49, 73, 84]. Liquid types are a refinement type system that combines type

inference with logical predicates to allow automated verification of program properties. For example,

elbow_joint/max_acceleration is defined as a doublewhose value is non-negative, otherwise the
elbow joint could start moving backward while performing an operation, when it is not supposed

to. Developers often miss these bounds since they are hidden in the documentation or transmitted

through informal shared knowledge. By embedding liquid types in the language, we can specify

these types of constraints to detect misconfigurations related to incorrect parameter values.

Information dependency is also supported in refinements through the use of logical expressions to

relate parameter, arguments, and their presence with each other. In the move_group_type definition,
we specify that if a non-default elbow_joint/max_velocity exists in a configuration, then the

parameter elbow_joint/has_velocity_limits must be true. This dependency is a documented

requirement that velocity limits must be enabled when specifying velocity parameters.

Listing 2 presents an example of a parameter dependency misconfiguration from an example from

ROS Answers [13]. In this case, the Integrator defined the system, which uses the specifications

from all its components, such as Listing 1. Since these files often contain dozens, if not hundreds,

of configurable parameters, they may skip the definition of optional parameters that may actually

be required due to parameter dependency. For example, the max_velocity is specified (with value

3.14), but has_velocity_limits is explicitly set to false. This violates the dependency constraint

defined in Listing 1 as it requires velocity limits to be enabled when max_velocity is provided.

4.2 Messages Alias and Field Definition
ROSpec allows the Writer to encode domain knowledge about ROS into the types through

type aliases. For instance, as presented in Listing 3, developers can define a type alias Meter:
int8, representing a physical unit measurement in meters. These are useful for documentation

purposes, since developers understand the semantics behind parameters, while enforcing constraints

structurally over the type to avoid misconfigurations. For instance, comparison with different units

is incorrect and may lead to physical unit mismatches (e.g., comparing meters and millimeters) [14].

ROSpec also allows the definition of message aliases and their field specifications. For example,

Listing 3 presents two message alias of different types of image encoding from a ROS Answers

question. Here, the Integrator is unaware of the encoding types, and their relation with the data
physical unit. The specification of both message aliases ensures that (1) a correct encoding is always

used in the encoding field, i.e., since in ROS, these fields are strings, they are prone to typos; (2) the

dependency between the data physical unit and the encoding type is respected and documented;

and (3) two components with a connection to the same topic have matching image encodings.

9
https://answers.ros.org/question/209450
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1 type alias ImageEncoding16: Enum[RGB16, RGBA16, BGR16, BGRA16, MONO16, 16UC1,
2 16UC2, 16UC3, 16UC4, 16SC1, 16SC2, 16SC3, 16SC4, BAYER_RGGB16,
3 BAYER_BGGR16, BAYER_GBRG16, BAYER_GRBG16];
4

5 type alias ImageEncoding32: Enum[32SC1, 32SC2, 32SC3, 32SC4,
6 32FC1, 32FC2, 32FC3, 32FC4];
7

8 type alias Meter: int8;
9 type alias Millimeter: int8;
10

11 message alias ImageWith16Encoding: sensor_msgs/Image {
12 field header: Header;
13 field encoding: ImageEncoding16;
14 field data: Millimeter[];
15 // ...
16 }
17

18 message alias ImageWith32Encoding: sensor_msgs/Image {
19 field header: Header;
20 field encoding: ImageEncoding32;
21 field data: Meter[];
22 // ...
23 }

Listing (3) Writer specification of message and type aliases to provide documentation regarding image
encodings and respective field information often missing from documentation ( Message ).9

4.3 Publisher & Subscriber, Service and Action Connections
In ROSpec, a Writer can specify which topics a given node publishes/subscribes to, or what

services and actions that are provided or consumed. This information is often scattered in the

source code since topic names may be defined in parameter files and remapped. ROSpec provides

this spread-out information in one place, allowing for a unified view of the architecture.

In Listing 4, a Writer defines the partial specification for two node types with connections,

hector_object_tracker_type and hector_map_server_type, responsible for object tracking and

map management, respectively. Line 6 uses a special function internal to ROSpec, content; upon
instantiation, the parameter’s content replaces the named topic for the service.

Listing 5 shows the description of a system containing twomisconfigurations. Two node instances

are created, inheriting all connections from the respective node types (from Listing 4). During node

instantiation, they provide the topic name through the distance_to_obstacle_service parameter,

which replaces the occurrence of the parameter by the service topic name in (Line 6). However, since

the topic name does not match the one provided by the service in the hector_object_tracker node
instance, there is no provider to the service, leading to a missing service provider misconfiguration.

Lines 19 and 20 propose a fix to the misconfiguration by introducing a remap that replaces the

wrong topic name with the correct one (get_distance_to_obstacle). The second misconfiguration

occurs since the worldmodel/image_percept topic is being subscribed to, but no publisher exists.

10
https://answers.ros.org/question/164526
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1 node type hector_object_tracker_type {
2 param distance_to_obstacle_service: string;
3

4 subscribes to worldmodel/image_percept: hector_worldmodel_msgs/ImagePercept;
5 publishes to visualization_marker: visualization_msgs/Marker;
6 consumes service content(distance_to_obstacle_service):
7 hector_nav_msgs/GetDistanceToObstacle;
8 }
9

10 node type hector_map_server_type {
11 provides service /hector_map_server/get_distance_to_obstacle:
12 hector_nav_msgs/GetDistanceToObstacle;
13 }

Listing (4) Writer specification of two nodes hector_object_tracker and hector_map_server,
responsible for tracking objects in an environment and fusing perceptual data by publishing-subscribing data
and providing-consuming services ( Publisher-Subscriber , Service & Action , Topic , Messages ).

14 system {
15 node instance hector_object_tracker: hector_object_tracker_type {
16 param distance_to_obstacle_service = "get_distance_to_obstacle";
17 }
18 node instance hector_map_server: hector_map_server_type {
19 + remap /hector_map_server/get_distance_to_obstacle to
20 + get_distance_to_obstacle;
21 }
22 }

Listing (5) Integrator configuration of both nodes from a ROS Answers question.10A misconfiguration is
raised since no publisher is provided to worldmodel/image_percept, and due to a missing remap, no
services are available for the hector_object_tracker node ( Connection , Messages ).

4.4 Quality of Service (QoS) and Color Format Policies
In ROS 2, Quality of Service (QoS) policies are used to control communication reliability, latency,

and resource usage for topics and services. It allows developers to have fine-tuned control over

message delivery, supporting features like reliability (best-effort vs. reliable), durability (volatile

vs. transient local), history (keep last vs. keep all), deadline constraints, and liveliness checks. In

ROSpec, we model these in the form of a policy. Policies are tags that decorate an attached structure.

Policies have a structure with settings that are used for the verification. The verification of QoS

settings follows the rules in the official documentation.
12

Listing 6 presents an example of two node types, openni_cammera_driver_depth and a cus-
tom_node, and their respective QoS settings. Writer creates a policy instance by providing the

parameters, and attaches it to both publisher and subscriber. Listing 7 considers the instantiation

of both node instances in the system. In this case, the integration of both components leads to

two misconfigurations: (1) the subscriber is expecting RGB8 image messages, while the publisher

11
https://answers.ros.org/question/142456

12
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html
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1 policy instance best_effort_qos5: qos {
2 setting depth = 5;
3 setting reliability = BestEffort;
4 }
5

6 node type openni_camera_driver_depth_type {
7 optional param depth_registration: bool = true;
8 @qos{best_effort_qos5}
9 @color_format{Grayscale}
10 publishes to /camera/rgb/image_raw: sensor_msgs/Image;
11 }
12

13 node type custom_node_type {
14 @qos{reliable_qos5}
15 @color_format{RGB8}
16 subscribes to /camera/rgb/image_raw: sensor_msgs/Image;
17 }

Listing (6) Writer adapted specification of openni and custom node used in a ROS Answers question.
Components connections contain two policies ( Publisher-Subscriber , Quality of Service ).11

17 system {
18 node instance custom_node: custom_node_type { }
19 node instance openni_camera_driver: openni_camera_driver_depth_type { }
20 }

Listing (7) Integrator configuration of both nodes from ROS Answers. The integration contains a color
format misconfiguration, since publisher and subscriber contains different image types. We purposedly
introduced a QoS misconfiguration leading to incorrect component integration. ( Connection , QoS ).

is sending GrayScale images, leading to color format misconfigurations; and (2) the QoS settings

between publisher and subscriber do not match, since the publisher makes a best effort in delivering

messages, while the subscriber expects to receive every message.

4.5 TF Transforms and Contextual Information
In ROS, TF frames correspond to coordinate systems attached to parts of a robot or its environ-

ment (e.g., base, camera, gripper). tf2 manages the spatial relationships between these frames by

constructing a tree of transforms, where each transform defines how to translate and rotate one

frame relative to another. This allows any node to convert positions, orientations, or motions from

one frame to another, allowing them to perform navigation, perception, and manipulation.

Listing 8 presents a partial specification for a laser_scan_matcher_type node, which processes

laser scan data to estimate robot motion. The node broadcasts a transform from world to base_link
and listens for transforms from base_link to laser ( DP13 ). The specification also includes contex-

tual information through the is_simulation variable ( DP16 ).

A Writer can specify contextual requirements that all instanced system components must ensure.

For instance, nodes may have distinct distribution contextual requirements, making their integration

13
https://answers.ros.org/question/11095
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1 node type laser_scan_matcher_type {
2 context is_simulation: bool;
3 // multiple parameters here...
4 optional param use_sim_time: bool = false;
5

6 broadcast world to base_link;
7 listens base_link to laser;
8 } where {
9 is_simulation -> use_sim_time;
10 }

Listing (8) Writer specification of laser_scan_matcher
node containing frame broadcast and listens, and execution
context information ( TF Frames , TF Broadcast/Listen ).

11 system {
12 node instance laser_scan_matcher:
13 laser_scan_matcher_type {
14 context is_simulation = true;
15 }
16 }

Listing (9) Integrator configuration leading to context and

broadcast errors ( Context , TF-Listen , TF-Graph ).13

... ...

............

... ...... ...

base_link

laser

✘

world

Fig. 7. Faulty branch of TF tree due to miss-
ing broadcast from base_link to laser.

impossible. In line 2, the contextual information specifieswhether the node is executed in a simulated

environment. If so, there is a dependency between is_simulation and the use_sim_time parameter

(Line 9), as it must be true to synchronize with simulated time instead of system time.

In Listing 9, the Integrator creates a laser_scan_matcher node instance and sets is_simulation
to true. However, this instantiation contains two misconfigurations: (1) as is_simulation is true,
use_sim_time should also be true, but it has its default value of false. Without this verification, the

node uses system time rather than simulation time, causing timing inconsistencies; and (2) the

specification requires a transform from base_link to laser, but the integrator does not provide this
transform. In a ROS system, this results in the TF system being unable to resolve the relationship

between these frames, causing sensor data processing failures. Figure 7 illustrates the resulting

faulty TF tree, where the transform from base_link to laser (represented by a dotted line) is

defined as required in the specification but not provided in the actual system at runtime.

4.6 Plugins
Plugins extend the functionality of node processes at runtime. These contain the same informa-

tion as nodes: arguments, parameters, contextual information, and connections (e.g., publisher-

subscriber). Listing 10 shows an example of a plugin type, right_arm_type, a kinematics solver

responsible for computing inverse kinematics for the robot’s right arm. When creating the respec-

tive plugin instance, developers provide the parameters, and must assign the plugin instance to

a node instance parameter. A plugin instance is created only when it is used by a node instance.

14
https://answers.ros.org/question/364801
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1 node type arm_kinematics_constraint_aware_type {
2 param group: Plugin;
3 }
4

5 plugin type right_arm_type {
6 param tip_name: string;
7 param root_name: string;
8 optional param robot_description: string = "robot_description";
9 optional param tf_safety_timeout: Second = 0.0;
10 // more parameters and connections
11 }

Listing (10) Writer perspective of a node and plugin definition from a ROS Answers question ( Plugin ).14

Otherwise, any connections provided do not exist. By designing ROSpec considering plugins, we

allow developers to quickly change a node instance configuration by plugging in different plugins.

Overall, ROSpec allows developers to specify and integrate ROS components into a system. In

this section, we illustrated the language features from the perspective of two stakeholders. We

presented the language syntax and expressiveness by specifying component configurations and

their integration in real-world examples. The following section showcases the language verification.

5 Language Semantics
In this section, we present the grammar, type formation rules, and type-checking rules used to

detect misconfiguration issues that arise when defining and integrating different components in a

ROS project. For brevity, we present only the particular subset of the rules relevant to our domain.

The complete syntax, formation, and verification rules is provided in the Supplemental Material.

5.1 Grammar
ROSpec is designed based on the concepts identified in Table 1. Of these, we defined the system,

node types, and node instances as top-level definitions within a ROSpec file. A Writer declares

the node types, while an Integrator declares the system and its node instances.

Users can include multiple declarations within each node type or instance: mandatory and

optional parameters, pub-sub connections, QoS, and name remappings. These concepts are present

in many misconfigurations from prior work [13]. The grammar of ROSpec is defined in Figure 9.

ROSpec is a typed language where nodes, parameters, topics, and messages have types. The

language includes primitive ROS types, such as int, bool, float, and string and their bit-width

variations (e.g., int8, float64), omitted in the grammar. It also has user-defined types (t), defining
custom message types such as geometry_msgs/Twist. The type variables are replaced with the

concrete type they alias. In the case of message types, like geometry_msgs/Twist, the concrete
type is a struct, containing named and typed fields, similar to C’s structs. Support for optional

parameters and arguments is provided through the Optional type, which annotates a type with a

default value when the caller omits it. This feature resembles Python’s use of default arguments.

Liquid types are the main engine used for modeling semantic properties [73], available whenever

a regular type can occur. A type T can be annotated with a refinement (x : T where { e }) where
𝑒 can refer to 𝑥 , restricting its possible values. The traditional Liquid Types style draws refinements

from a decidable logic. While this limitation restricts what users can model, we show in Section 6

that these can be expressive enough to detect several real-world misconfigurations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 391. Publication date: October 2025.

https://docs.ros2.org/foxy/api/geometry_msgs/msg/Twist.html


ROSpec: A Domain-Specific Language for ROS-Based Robot Software 391:15

Types 𝑇 ::= int | bool | float | string | t
| struct { 𝑥 : 𝑇 }
| 𝑥 : 𝑇 where { 𝑒 }
| Optional(𝑇, 𝑒)
| NodeT(𝑆𝑝 ; 𝑆𝑐 ; 𝑆 𝑓𝑟 )

Definitions 𝐷 ::= node type 𝑥 { 𝑆𝑝𝑑 ; 𝑆𝑐 ; 𝑆 𝑓𝑟 }
| node type 𝑥 { 𝑆𝑝𝑑 ; 𝑆𝑐 ; 𝑆 𝑓𝑟 } where { 𝑒 }
| node instance 𝑥1 : 𝑥2 { 𝑆𝑝𝑖 ; 𝑆𝑟 }
| system{ 𝐷 }

Declarations 𝑆𝑝𝑑 ::= param 𝑥 : 𝑇 ;

| optional param 𝑥 : 𝑇 = 𝑒;

𝑆𝑝𝑖 ::= param 𝑥 = 𝑒;

𝑆𝑐 ::= 𝑥1 publishes/subscribes to 𝑥2 : 𝑇 ;

| 𝑥1 publishes/subscribes to 𝑥2 : 𝑇 with qos(𝑒);
𝑆 𝑓𝑟 ::= 𝑥1 broadcast/listens 𝑥2 to 𝑥3;

𝑆𝑟 ::= 𝑥1 remap 𝑥2 to 𝑥3;

Context Γ ::= 𝜖 | Γ, 𝑥 : 𝑇 | Γ, 𝑡 = 𝑇 | Γ, 𝑥 ↦→ 𝑆𝑐

Fig. 9. A subset of the grammar for Declarations and top-level definitions, as well as types and typing context.

To support type-checking, we rely on a type context (Γ) that contains three types of mappings:

a) mappings from variables to types (𝑥 : 𝑇 ), used for node types, plugin types, and instances; b)

type alias information (𝑡 = 𝑇 ) used to save the human-readable name of a given structure type; and

c) connection and transform mappings between nodes and topics, such as representing that a given

node publishes to or subscribes to a topic, and broadcast or listens to a transform.

5.2 Formation Rules
The typing rules in Figure 10 validate that a given specification is correct. We highlight in the core

premises explained in the main body of the text, also highlighted with the corresponding color.

At the top level, we can have node type, node instance, or system definitions. Node types

introduce in the context a mapping from the node type name 𝑥 to its type (D-NodeType).
Node instances are validated using the information from the node type already present in the

context (D-NodeInstance). The node type needs to be previously defined, and the parameters

declared in the instance must match with those declared in the node type (subtyping). These checks

validate properties Typing , Bounds , Dependency , Presence , Consistency and Conditionals . Ad-

ditionally, these rules introduce concrete topic connections to the context by instantiating the node

type connections (𝑆 ′𝑐 ) with concrete values (𝜎) and applying all remappings in the instance (𝑆𝑟 ).

At the system level, we validate rules that concern connections between nodes and topics, such

as Connection , Message , Fields , TF-Listen , TF-Graph , Cardinality and QoS . In D-System, we
validate each node instance that in the system, and then collect the resulting context (Γ′) containing
all connections between nodes and topics. Given that information, we check that topics with at
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D-NodeType

Γ ⊢ node type 𝑥 { 𝑆𝑝 ; 𝑆𝑐 ; 𝑆 𝑓𝑟 } ⊣ Γ, 𝑥 : NodeT(𝑆𝑝 ; 𝑆𝑐 ; 𝑆 𝑓𝑟 )

D-NodeInstance

Γ ⊢ 𝑥2 : NodeT(𝑆 ′𝑝 ; 𝑆 ′𝑐 ; 𝑆 𝑓 𝑟 ) Γ ⊢ 𝑆𝑝𝑖 <: 𝑆 ′𝑝
𝜎 = 𝑆𝑝𝑖 ∪ {𝑥 ↦→ 𝑒 | 𝑥 : Optional(𝑇, 𝑒) ∈ 𝑆 ′𝑝 , 𝑥 ∉ 𝑆𝑝𝑖 }

Γ ⊢ node instance 𝑥1 : 𝑥2 { 𝑆𝑝𝑖 ; 𝑆𝑟 } ⊣ Γ, 𝑥1 ↦→ 𝑆 ′𝑐 [𝜎] [𝑆𝑟 ]

D-System

Γ ⊢ 𝐷 ⊣ Γ′

∀𝑠 ↦→ subscribes to(𝑥, 𝑇2) ∈ Γ′, ∃ 𝑝 ↦→ publishes to(𝑥, 𝑇1) ∈ Γ′ ∧ Γ′ ⊢ 𝑇1 <: 𝑇2
∀𝑠 ↦→ publishes to(𝑥) with 𝑞𝑜𝑠 (𝑞1) ∈ Γ′,

∀𝑠′ ↦→ subscribes to(𝑥) with 𝑞𝑜𝑠 (𝑞2) ∈ Γ′, check_qos(𝑞1, 𝑞2)
∀ 𝑠 ↦→ listens(𝑥1, 𝑥2) ∈ Γ′, ∃ 𝑝 ↦→ broadcasts(𝑥1, 𝑥2) ∈ Γ′

∀ 𝑠 ↦→ broadcasts(𝑥1, 𝑥2) ∈ Γ′, ∀ 𝑠′ ↦→ broadcasts(𝑥2, 𝑥3) ∈ Γ′, 𝑥1 = 𝑥2

Γ ⊢ system { 𝐷 } ⊣ Γ′

Fig. 10. Definition Formation Rules, Γ ⊢ 𝐷 ⊣ Γ .

least one subscriber have a publisher with a matching message type, or the expected number of

publishers/subscribers; corresponding publishers and subscribers have compatible QoS settings,

according to the ROS2 specification;
15
nodes expecting a TF transform from 𝑥1 to 𝑥2 have a node

publishing that transform; and there is only one node broadcasting information to a child frame.

S-Int

Γ ⊢ int <: int

S-Bool

Γ ⊢ bool <: bool

S-Struct

Γ ⊢ 𝑇𝑖 <: 𝑈𝑖

Γ ⊢ struct{ 𝑥𝑖 : 𝑇𝑖 } <: struct{ 𝑥𝑖 : 𝑈𝑖 }

S-Optional

Γ ⊢ 𝑇 <: 𝑈

Γ ⊢ 𝑇 <: 𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙 (𝑈 , 𝑒)

S-Param

Γ ⊢ 𝑠𝑒𝑙 𝑓 (𝑒) <: 𝑇
Γ ⊢ param 𝑥 = 𝑒 <: param 𝑥 : 𝑇 ;

S-Where

Γ ⊢ 𝑇 <: 𝑈 Γ, 𝑥1 : 𝑇 ⊢ 𝑒𝑖 =⇒ 𝑒2 [𝑥2 ↦→ 𝑥1]
Γ ⊢ (𝑥1 : 𝑇 where { 𝑒1 }) <: (𝑥2 : 𝑈 where { 𝑒2 })

Fig. 11. Subtyping Rules, Γ ⊢ 𝑡1 <: 𝑡2 .

Figure 11 shows the subtyping rules. Rules are standard for basic types, optional types, and

structs (all fields must match, and subtyping is covariant). S-Param relies on selfification to convert

15
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html
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a concrete value into a refined type that only describes itself [65]. S-Where dispatches implications

to either evaluation, when 𝑒1 is made of variable assignments (e.g., 𝑥 = 𝑣1 ∧ 𝑦 = 𝑣2), or dispatched

to a Satisfiability modulo theories (SMT) solver, like z3 [22], (e.g., 𝑥 > 1 =⇒ 𝑥 > 0) which only

occurs in message types [73].

6 Evaluation
To demonstrate ROSpec’s ability to specify ROS components and their integration, we evaluate the

language in two ways: (1) We model a medium-size robotics case study system to show that the

language can model an entire robot when looking at the macro perspective of the systems; and (2)

We model the dataset of misconfigurations so that we can understand the coverage of the language,

its limitations, and further work needed to address them.

6.1 Case Study: Neobotix MP-400 in AWS Small Warehouse

Fig. 12. AWS Small Warehouse World. Fig. 13. Neobotix MP-400.

System Details. Our case study was taken from a popular online robotics learning platform,

The Construct Sim,
17
, which offers ROS-based courses ranging from basic concepts to complex

applications using navigation, manipulation, and control. Given that novices face challenges when

learning ROS [15], we expect that providing ROSpec specifications to platforms like The Construct

Sim can help newcomers detect and understandmisconfigurations while learning core ROS concepts.

From The Construct Sim course selection, we chose the “Advanced ROS 2 Navigation” course and

its respective case study, as the Navigation stack represents one of the most widely used packages

in ROS, responsible for path planning, localization, and obstacle avoidance. The course requires

students to configure and integrate commonly used Nav 2 components, including AMCL (Adaptive

Monte Carlo Localization), keep-out zones, and speed limit filters.

The course setting resembles a real-world Amazon warehouse environment (Figure 12) where

robots navigate and transport loads [68]. The Neobotix MP-400 (Figure 13) used in the case study is

a simplified version with a simpler warehouse environment and robotic system, where its primary

objective is to navigate between two points in the warehouse using a waypoint follower, avoiding

obstacles and dangerous areas, and respecting speed limit zones. The robot is equipped with a 2D

LIDAR scanner that provides range measurements to objects in its environment map, which is

provided statically to the system.

16
https://docs.nav2.org/configuration/packages/configuring-amcl.html

17
http://theconstruct.ai
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1 type alias LaserModelType: Enum[Beam, LikelihoodField, LikelihoodFieldProb]
2

3 node type amcl_type {
4 context distribution: AfterHumbleVersion;
5

6 param robot_model_type: Enum[DifferentialMotionModel, OmniMotionModel];
7 param scan_topic_name: string;
8 param map_topic_name: string;
9

10 optional param z_hit: double = 0.5;
11 optional param z_max: double = 0.05;
12 optional param z_rand: double = 0.5;
13 optional param z_short: double = 0.005;
14 optional param always_reset_initial_pose: bool = false;
15 optional param laser_model_type: LaserModelType = LikelihoodField;
16

17 @qos{sensor_data}
18 publishes to particle_cloud: nav2_msgs/ParticleCloud;
19

20 @qos{sensor_data_profile}
21 subscribes to content(scan_topic_name): RestrictedLaserScan;
22

23 @qos{system_default_qos}
24 subscribes to initialpose: geometry_msgs/PoseWithCovarianceStamped
25 where {count(publishers(_)) == 1};
26

27 @qos{transient_reliable_qos}
28 subscribes to content(map_topic_name): nav_msgs/OccupancyGrid;
29

30 provides service reinitialize_global_localization: std_srvs/Empty;
31 provides service set_initial_pose: nav2_msgs/SetInitialPose;
32

33 broadcast map to odom;
34 broadcast odom to base_link;
35 broadcast base_link to scan;
36 } where {
37 laser_model_type == Beam -> z_hit + z_max + z_rand + z_short == 1;
38 laser_model_type == LikelihoodField -> z_hit + z_rand == 1;
39 always_reset_initial_pose -> exists(initial_pose);
40 }

Listing (11) Writer partial specification for the AMCL node that uses a particle filter to estimate a robot’s
pose based on sensor data and a known map.16 The complete case study code is provided in the artifact.

Component Specification and System Integration. When specifying components using ROSpec,

we drew from two primary information sources: source code and online documentation. The source

code provided details regarding connection information and quality of service settings, while

documentation provided semantic information about configurations.
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When modeling the components, we focused on the ones that required configuration in the

course: amcl for localization, controller_server for trajectory execution, planner_server for

path planning, map_server for environment map management, costmap for obstacle representation,
and gazebo for simulation. Additionally, we modeled 13 different plugins used by nodes, i.e., dynam-

ically loaded components that extend the functionality of nodes, through the use of plugin type,
including FollowPath, KeepOutFilter, and SpeedFilter. The Writer specification comprises 434

lines of code across 19 different components, while the Integrator system instance requires only

64 lines, as many default values for optional parameters remain unchanged.

Listing 11 presents a partial specification of AMCL, a ROS 2 package that uses a particle filter to

determine a robot’s position using sensor inputs and a given map. In this specification, we define

contextual information, parameters, connections, TF frames, and parameter dependencies.

This version of the component contains contextual information regarding its distribution
(Line 4), as there is one parameter name changed after the Humble version — other components

must also explicitly declare their distribution and ensure it respects this versioning requirement,

preventing mismatching component versions.

The specification also defines a custom type alias (LaserModelType) to restrict the set of

allowed values for the laser_model_type parameter. In ROS, these options are encoded as strings

or integer literals later mapped to the respective values. However, this mapping is prone to typing

errors or the use of invalid integers, leading to the use of incorrect parameters and having the

system execute with default values without the developer’s knowledge.

For connections, the AMCL specification describes the topics it publishes to and subscribes to
and the service it provides. The specification also restricts the number of publishers to the ini-
tialpose topic (Line 26). initialpose is a topic that sets a robot’s starting position for localization

and should have a single publisher to prevent conflicts frommultiple sources overriding the pose. By

restricting the number of publishers using the internal language functions, count(publishers(_))
== 1, we ensure that only one component publishes to that topic in the system. This refinement

extends liquid types beyond their traditional use, allowing reasoning about the system architecture.

Finally, the AMCL documentation presents parameter dependencies that are not enforced when

developers configure their system. In ROSpec, we model these in the node type where clause,

preventing value dependency mismatches. For instance, depending on the laser_model_type, the
z_* parameters used are different, and their sum must be equal to 1 (Lines 37-38).

In summary, we used all language features when specifying components from the case study using

ROSpec. Translating the natural language specifications from documentation and incorporating

restrictions and dependencies into parameters was generally straightforward. However, defining TF

transforms and publisher–subscriber, service, and action connections was more challenging. These

are often undocumented and required the manual inspection of multiple source files to understand

their interaction with parameter files. From a Writer ’s perspective, we expect the specification of

the component to be easier, as they are already familiar with it.

6.2 Misconfiguration Modeling
Dataset Details. To evaluate the language’s ability to address different categories of misconfigu-

ration, we used the dataset comprising 50 different types of misconfigurations identified in prior

work [13]. The dataset consists of 182 questions from ROS Answers, each annotated with one or

more misconfiguration categories. Currently, this represents the most comprehensive available

dataset of documented misconfigurations in ROS-based systems. Although this dataset informed

our initial language design methodology, evaluating the language against this dataset allows us to
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Table 3. Summary of results from manual analysis and specification of 182 questions from prior work [13].
Questions may contain multiple misconfigurations; partial specifications and system integrations are provided
where sufficient context exist. Complete dataset with questions and specifications is provided in the artifact.

Category Description # of Questions

Detectable

Component specification and integration possible; thus

making the misconfiguration detectable.

61 (33.5%)

Documented

Component specification provided, but lacking infor-

mation for integration; thus acting as documentation.

23 (12.6%)

Not supported

Component information and integration provided, but

the language cannot support the misconfiguration.

39 (21.4%)

Out of scope

Questions not applicable to ROS 2, bugs in components,

with no misconfigurations, or documentation-related.

31 (17.0%)

Not enough context

Missing information regarding the component prevent-

ing its specification and integration.

28 (15.4%)

Total 182 (100%)

assess the language coverage of the different categories of misconfigurations while highlighting

specification challenges, current limitations, and potential future extensions.

Dataset Partial Specification. For each ROS Answers post, we manually analyzed questions and

answers to understand the components used, attempted integration, and sources of misconfigura-

tions. We then categorized each question according to the five categories presented and described

in Table 3. When enough context was provided, and the question was within scope, we partially

specified the components used in the question and their system instances. Partial specifications

are provided due to the extensive manual effort to specify numerous configuration parameters

and connections, incomplete documentation requiring manual analysis of scattered source code

and configuration files, or missing information preventing the complete specification. A question

was considered detectable when all misconfigurations annotated in a question were addressed,

while not-supported questions indicated that at least one misconfiguration could not be fulfilled

by ROSpec. Questions are considered documented with specifications when verification is not

possible due to missing information of non-faulty components and their integration into the system.

We provide partial specifications that serve as documentation for the available components. Out

of scope questions are annotated in the original dataset as Documentation, and Components and
Infrastructure bugs — outside of scope of component configuration and integration. Our final ROS

misconfiguration dataset provides a mapping between ROS Answers questions, the annotated

misconfigurations, and their corresponding writer and integrator specifications.

Results. Table 3 presents the language’s overall coverage for each category. The categories are

grouped by the ability to provide specifications: the first three represent attempted specifications,

while the latter two indicate cases where attempting to provide specifications is not possible.

When considering Out of scope questions, the majority of the questions are related to how-to use

a component questions (11/31) or to bugs internal to components (11/31). The remaining questions

are related to ROS 1 concepts no longer applicable to ROS 2, and calibration runtime questions,

where the configurations are correct but required some improvements.

When analyzing Not supported questions, there are three major features that ROSpec currently

does not support: (1) URDF configuration files, responsible for describing the physical and kine-

matic structure of a robot; (2) detection of race condition misconfigurations in launch files; and,
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(3) frequency and synchronization properties, as the language does not support specifying the

frequency of connections and their synchronization.

The Detectable and Documented categories cover 46.1% of the total questions — expected, as

ROSpec is designed to cover these misconfigurations. When considering the attempted cases,

ROSpec successfully covers 68% (84/123) of the questions. ROSpec covers all twelve high-level

categories of misconfigurations from prior work, although some sub-categories (e.g., URDF) are

completely not covered and some partially covered (e.g., time-related misconfigurations).

InDocumented questions, type alias and message alias play an important role, as they provide

semantic information when documentation is missing or unclear. For instance, developers often

question physical units in message fields and their dependencies, which we model by creating

different message and type aliases and establishing dependencies between specific image encodings

and data physical unit types.
18

In Detectable questions, almost all questions required the definition of a node type (60/61),

where most of these contained information about their parameters (38/61), specifications on the

dependency between them (27/61), followed by TF transforms (15/61). From the language features

proposed, two are the least used to specify components: (1) Quality of Service settings (2/61), as most

questions in the dataset relate to ROS 1 where the concept was not introduced, and (2) contextual

information (11/61), since questions may be related to contextual information but the specification

does not require the context concept to detect it. Regarding connections, publisher-subscriber

is the most used concept with a total of 59 connections (23/61), validating the results from prior

work [77], followed by services (4/61) and no actions.

Considering the prevalence of type features in Documented and Detectable questions, liquid and

dependent types appear in 40 of the 84 questions (47.6%). Dependent types are more frequently

used for defining dependencies between parameters and contextual information, appearing in

27 questions (32.1%), while liquid types are explicitly used in 14 questions (16.7%). This analysis

excludes type aliases used with refinement types and inherent refinements in receiver connections,

such as subscribers that implicitly expect one publisher.

In summary, the manual analysis of the dataset provided insights on ROSpec specification abilities

and limitations. As in the case study, specifying parameters and argument configurations was

straightforward, whereas contextual information required more understanding of the application

and execution environment. Furthermore, as questions often described the publishes to and

subscribes to connections, it helped specify components integration. For Documented, constructs

like type alias and message alias helped provide semantic meaning, such as physical units, for

basic types. However, the language still lacks expressiveness specifying some ROS concepts: a)

launch file race conditions, which require reasoning about execution order; b) frequency and

synchronization, not yet modeled but planned for future extensions; and, c) URDF files, whose

extensive configuration files are related to the physical system and not the software perspective.

7 Related Work
Prior work presented domain-specific and architectural domain languages to specify components

and prevent architectural issues in the robotics and cyber-physical domains [62, 86]. At a high level,

they focus on specifying structural, behavioral, and hardware-specific domain-based architectural

properties. Structural specification languages describe the interconnection between components

and connectors [36, 61, 64, 89], ensuring that software components are correctly assembled. Behav-

iorally, these languages specify properties to ensure real-time (e.g., frequency [30], queues [5], and

18
https://answers.ros.org/question/209450, and https://answers.ros.org/question/260640.
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synchronization [24]), timing [54, 70], and other functional [36, 57] and non-functional [55, 71] re-

quirements. Domain architectural languages also specify hardware properties [30, 78, 89] to ensure

the system’s software-to-hardware architectural consistency. Finally, synchronous programming

languages such as Lustre [38], Esterel [7], and coordination languages like Lingua Franca [53] and

Kahn Process Networks [35] provide formal temporal semantics to verify causal relationships and

timing properties between components that ROSpec currently does not support.

General-purpose architectural description languages (ADL), such as Wright [3], Architecture

Analysis and Design Language (AADL) [27], and Acme [34], have previously been used to describe

robot architectures [10, 75]. Specifically to ROS, recent work has described component connections

using AADL [5]. However, its application in other domains identified usability challenges, includ-

ing property ambiguity regarding system requirements and subcomponent specifications (which

ROSpec addresses directly) [23], increased entry barriers for adoption [23], and lack of flexibility

in supporting user-defined connectors [66]. When specifically comparing AADL to DSLs, such

as ROSpec, prior work identifies three main challenges [11]: (1) AADL lacks stakeholder-specific

language specialization, making it difficult to separate concerns for different roles; (2) AADL’s

general-purpose constructs create verbosity and potential conflicts with domain-specific concepts

(e.g., process and subcomponent have different meanings in ROS); and (3) effectively detecting

the misconfigurations given Table 2 properties requires AADL to model concepts like liquid and

dependent types — making it challenging to balance generality and domain specialization.

Recent advances in automated recovery of ROS configurations and architecture have addressed

particular instances of ROS misconfigurations. For instance, HAROS [76] and ROSDiscover [79],

recover the structural architecture of the system and can detect common connection issues (e.g.,

subscriber missing a publisher), ROSInfer [25] infers reactive, periodic, and state-dependent infor-

mation from components, allowing them to detect three behavioral architectural misconfigurations,

and Phys [44] detects physical unit mismatches in components by using ROS message assumptions

and physical units inference. Nevertheless, the effectiveness of these approaches depends on the

user intent. ROS components are very versatile, and the properties of their usage depend from

component to component. By using standard assumptions about components, these tools cannot

capture the specific configurations and properties of each component, leading to false positive

detections. ROSpec approaches this concern by providing a way to specify user intent, which can

potentially be integrated with these approaches to detect misconfigurations in the source code.

Liquid types [73] have traditionally been used in executable languages, such as Haskell [84],

TypeScript [85], Java [31], and Flux [49] to ensure program correctness, verify resource consump-

tion [45], and synthesize programs given a specification [29, 67, 82, 88]. While recent work has

explored applying refinement types to non-executable languages for visualization synthesis [92]

and security in web applications [50], their application to architectural specification domains

remains largely unexplored to the best of our knowledge. As demonstrated through ROSpec, liquid

types have the potential to refine configurations and integration in highly configurable systems

across domains.

8 Discussion & Future Work
Detecting configuration errors is critical in robotics, as they can lead to erratic and potentially

dangerous system behaviors. With ROSpec, we provide developers a means to specify and ensure

correct component configuration and integration. In this section, we discuss current limitations,

potential language extensions for detectingmisconfigurations, and future work to verify source code

correctness and improve the developer experience when creating and maintaining specifications.
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Language limitations regarding unsupportedmisconfigurations. The evaluation of ROSpec
on questions about misconfigurations raised three main limitations in the language.

First, URDF configurations are not supported in the language as these may contain hundreds of

physical-related parameters. We considered that specifying these alongside supported elements

would hide them as they would represent a small fraction of the specification compared to URDF

parameters. A possible solution is extending the language specifically to URDF, and allow developers

to provide these separately from the regular component and system configurations.

Second, the language does not support frequency misconfigurations. Questions often did not

provide information regarding component frequencies, or when existing, the message processing

frequency by components is impacted by hardware limitations, making it challenging to detect.

Third, launch files race condition misconfigurations are not detectable by ROSpec. The language

provides a static view of the system when all components are already integrated and executed.

However, in ROS, this architecture may differ depending on the ordering of launching components.

For instance, a consumer service may be launched before a provider service. Detecting such

instances requires temporal logic [72] to describe the launch ordering of components.

Liquid and dependent types for configuration and architectural verification. ROSpec
demonstrates how liquid and dependent types can be used beyond code verification for the purpose

of specifying component configurations and their integration. While dependent types allowed the

specification of dependencies between configurations and contextual information, liquid types

provided restrictions over components configuration values and connections when integrated into

a system. Our approach opens opportunities for using these established programming language

concepts as verification engines in other architectural domains where configuration correctness

is critical. For machine learning pipelines, architectural-level refinements can restrict component

ports, preventing classifiers from training on imbalanced datasets or applying temporal aggregation

to non-time-series data [21]. Microservices architectures could benefit from extending JSON-based

descriptions like the Microservices Architecture Language (MIRL) [51] with liquid types to refine

service nodes and their relationships. Similarly, IoT and edge computing architectures [39] could

use liquid and dependent types for formal specifications of resource constraints (e.g., memory,

bandwidth, and latency) and security requirements [47, 48]. However, further research is needed to

validate the effectiveness of the language paradigms within these domains.

Language extensibility to new features. As ROS is a real evolving ecosystem, it is critical for

ROSpec to adapt and support new concepts and the detection of new misconfigurations. While

ROSpec focuses on core ROS concepts, the language is extensible to new features and verifications

by reusing contextual information, creating new policies, or implementing new uninterpreted

functions. For example, developers can specify deployment-specific information and RMW im-

plementations using the context keyword, allowing the reasoning of resources and networks.

Additionally, messages’ timeliness requirements can be implemented through a frequency unin-
terpreted function, refining expectations and guarantees regarding message frequency. Finally,

security requirements
19
can be modeled by creating new policies attached to components, ensuring

that only trusted components perform authentication-specific operations.

Usability argument for ROS-based domain-specific languages. When designing ROSpec, we

studied and used domain knowledge and misconfiguration sources to improve language usability.

In ROS, we identify two primary stakeholders in its ecosystem: Writer and Integrator . ROSpec

explicitly models these perspectives and their respective concerns. This stakeholder specialization

separates concerns, allowing them to focus on their role during specification.

19
https://design.ros2.org/articles/ros2_dds_security.html
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Familiarity with the domain concepts can make system description more intuitive for developers.

Prior work in domain-specific architectural languages motivates the need for domain-specific

concepts to improve language usability [90]. When designing ROSpec, we incorporated ROS 2

concepts to provide familiarity with concepts developers use, while drawing insights on prior

research [13] to ensure language expressiveness to detect misconfigurations.

When designing a language, ergonomics are important to reduce the friction between the

language and the domain concepts [83]. In designing ROSpec, we minimized this friction by: (1)

identifying distinct stakeholder roles and incorporating their perspectives; (2) building specifications

upon established ROS concepts familiar to developers, reducing the learning curve; and (3) adopting

ROS naming conventions for consistency (e.g., a node publishes to topic).
Nevertheless, effectively evaluating a language’s usability requires interviews with ROS develop-

ers, as they may share the same usability challenges when using liquid types as identified in prior

work [32]. These provide the understanding of how they specify their components, identify their

challenges, and understand the features needed for specification and misconfiguration detection.

Leveraging architectural recovery to ensure source code to specification consistency.
ROSpec is a language that abstracts ROS implementation details and provides specifications for

component configurations and their integration. This verification ensures correct configuration

and interaction between components (i.e., external specification consistency). However, ROSpec

does not verify the correctness of source code against specifications (i.e., internal consistency).

Checking internal consistency in ROS is challenging as component configurations are distributed

across different file formats and programming languages (e.g., Python and C/C++). Nevertheless, re-

cent improvements in architectural recovery analysis tools such as HAROS [76], ROSDiscover [79],

and ROSInfer [25] can collect configurations and identify component connections. Recent advances

in misconfiguration detection — including test-based approaches [16], static and dynamic analy-

sis [40, 41, 93], and Large Language Models [52] — could complement these architectural tools to

identify misconfigurations at the source-code level.

However, as discussed in Section 7, these tools often lack developer intent, limiting their ability

to perform meaningful verifications. By leveraging these tools, we can verify components’ internal

consistency by inferring their configurations. Any mismatches indicate that the component does

not respect the specification, either because the implementation is out of sync or due to a bug.

Automated synthesis of specifications from source code and natural language. Writing

specifications can be repetitive and challenging, as developers must duplicate their configuration

efforts in the specification while translating their natural language requirements into formal lan-

guage properties. We can automate portions of component specification writing and generate initial

specification templates by leveraging architectural recovery static analysis tools alongside natural

language processing approaches, particularly Large LanguageModels (LLMs). Architectural analysis

tools have statically recovered configurations and connections from source code [25, 76, 79]. Con-

currently, LLM-based techniques have shown promise in converting natural language specifications

into formal specifications [37, 87]. Combining these approaches can reduce specification writing

effort. Moreover, when specifications and implementations diverge, we can automatically update

specifications by computing differences between implementation versions and their specifications.

Runtime verification of non-statically verifiable properties. ROSpec allows developers to
introduce specifications that verify correct component configuration and integration. However,

certain specifications, such as those defined in message alias, cannot be verified internally against
the component implementation. These specifications require runtime execution to verify whether

transmitted and received data dynamically conform to the constraints, mainly when components
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interact with sensors that collect real-world data. By leveraging component specifications as

expressions of developer intent, we can automatically generate runtime monitors [9, 28, 42] that

detect misconfigurations against properties defined in the message field types.

9 Conclusion
Misconfigurations in ROS-based systems can lead to unpredictable and potentially dangerous

system behaviors. In this paper, we introduced ROSpec, a domain-specific language for specifying

component configurations and their integration. We grounded our approach in a study of domain

concepts and misconfiguration properties, allowing developers to specify their components and

ensure their correct integration. Our evaluation demonstrated the language’s abilities by modeling

a warehouse robot and addressing misconfigurations identified in prior work. While ROSpec

represents a step towards more reliable robot software, future work will focus on evaluating the

language usability while improving the language features. By addressing these challenges, we aim

to improve the correctness and safety of complex robotic systems.

10 Data-Availability Statement
The complete dataset of 182 ROS Answers questions with categories and specifications, the ROSpec

source-code and its language design, including the glossary of used core ROS concepts, grammar

definitions and type-checking rules, the warehouse robot case study source-code and specification,

and a website with language documentation, are available at 10.5281/zenodo.15722060 [12].
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