
…

Integer

{x : Integer | x != 0}

Integer → Integer → Integer

Integer

Acknowledgements: This work was

supported by the Fundação para a Ciência e

a Tecnologia (FCT) under LASIGE Research

Unit UIDB/00408/2020 and the CONFIDENT

project (PTDC/EEI-CTP/4503/2014).

Evolutionary Program Synthesis
from Refined and Dependent types

Paulo Santos, Andreia Mordido, Vasco Vasconcelos,

Sara Silva, Alcides Fonseca

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

The software market revenue worldwide in

2018 was estimated in 456 billion U.S.

Dollars and it is projected to grow to 507

until 2021. The focal activity of this industry

is the maintenance and development of

software.

Program Synthesis is the task of generating

a program that fulfils partially or completely

a specification, allowing the development of

more reliable, secure, faster and cheaper

software.

Motivation

original : Image = loadImage("monalisa.jpg“, 75, 150)

evolveImage() : {img : Image | width(original) == width(img) and

height(original) == height(img) and

polygons(img) < 500 and

@minimize (difference(original, img)} {

⬛

}

Synthesis of low polygon Mona Lisa in ÆON

ÆON to ÆONCORE

Non-deterministic Synthesis

Fitness function extractor

1. Initialization

ÆON

Synthesize complete and partial programs from refined and dependent types

Load the original image.

1

2

3

4

Predicate 1 and 2
Ensures the correct width and

length of the output image.

Predicate 3
Limits the amount of polygons to

ensure it is a low polygon image.

Predicate 4
Minimizes the difference between

both images.

.ae ÆON is a functional programming

language that uses refined types

to generate valid expressions and

dependent types to synthesize

correct individuals.

ÆON was created with a user-

friendly syntax, allowing new pro-

grammers to engage with the lan-

guage. It acts like a syntactic fron-

tend to its core, ÆONCORE, which

exhibits a more complex syntax as

it follows the type system rules.

We propose a sound and complete synthesis

algorithm which non-deterministically generates

programs that use and define new polymorphic

functions and makes recursive calls.

3

2

5

4

3. Selection

4. Recombination

5. Mutation

2. Evaluation

1

2

3

4

Each assertion is recursively

converted (𝑓) into an objective

which each individual will try to

minimize.

1 2 3 4

=
Multi-Objective

Optimization

Solution found!
fitness == 0 or

generation == maximum generations

1

𝑥 = 𝑦 𝑥 − 𝑦 𝑁↠

𝑎 ∨ 𝑏 𝑚𝑖𝑛(𝑓 𝑎 , 𝑓(𝑏))↠
↠𝑎 ∧ 𝑏 (𝑓 𝑎 + 𝑓 𝑏)/2
↠
↠

↠

𝑎 → 𝑏
¬𝑎

𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒

𝑓(¬𝑎 ∨ 𝑏)
1 − 𝑓(𝑎)

0, 1

𝑥 ≠ 𝑦 1 − 𝑥 − 𝑦 𝑁↠

cipher(x : Integer, key : Integer) :

{y: Integer | y > 0 and

x == decypher(y, key)}

Refined Type

Dependent Type

Γ ⊢ 𝑥 ∶ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑥 ≠ 0} ⇝𝑑 𝑒

⇝𝒅 generate an expression with maximum depth d.

Generate the offspring by

swapping two subtrees

with the same type.

If no type is found

synthesize a new expression

Refined type

SMT

Traditional Selection

Lexicase Selection

Filter the individuals

according to their

performance on

test cases.

Providing the type of the

hole operator to the non-

deterministic synthesizer

allows the generation of a

random initial population.

0, 4.20, true, false, f(x)

/

+

y1

⬛

/

+

y1

⬛

Mutation randomly selects a

node of a subtree and uses its

type to synthesize a compatible

replacement.

Boolean Continuous

The objective is to minimize the error

between the user intention and the

randomly tested fitness

functions.

Every generated tree is valid and

verifiable by the SMT %

-

yx

2

/

x

y 1

+

%

-

yx y 1

+

+ =

5 6

Resource consumption

Execution time

