
User input:

class Var(Number):
name: Annotated[

str,
VarRange(

["x", "y"])
]

class Literal(Number):
val: Annotated[

int,
IntRange

(-2, 2)
]

Shortcoming 1

Genetic Engine extracts

the grammar from

Python classes. As

such, no knowledge of

grammars is needed.

Furthermore, Genetic

Engine is Python

native, allowing the

user to use Python

libraries and legacy

code, linting, and code

completion.

Individuals can

be converted

to code

Direct Evaluation: Genetic

Engine allows the use of

derivation trees as individual

representations. As such, it

can directly evaluate

individuals, resulting in

performance advantages.

Meta-Handlers are used to restrict function and

terminal generation in many ways. Here, they

are used to restrict terminal values. Meta-

Handlers can also be used to specify the

generation probability of functions and

terminals! This is also possible by BNFs, but

only in a very cumbersome way that does not

scale well.

Population of Linear Strings

Fitness Evaluation

14032425332452652777524422110

03030445112246578634125243547

22634963725141322211001234342

etc…

Acknowledgements: This work was

supported by the Fundação para a Ciência e

a Tecnologia (FCT) under LASIGE Research

Unit UIDB/00408/2020 and the CONFIDENT

project (PTDC/EEI-CTP/4503/2014), and the

CAMELOT project of Carnegie Mellon

Portugal, and the RAP project under the

reference (EXPL/CCI-COM/1306/2021).

Genetic Engine: Grammar-Guided
Genetic Programming without the
grammar
Leon Ingelse, Guilherme Espada, Paulo Santos,

Pedro Barbosa, Alcides Fonseca

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Genetic Programming (GP), a nature-inspired Machine Learning (ML)

method, is praised for its ability to produce solutions from vast solution

spaces. Grammar-Guided GP (GGGP) uses grammars to restrict the

solution space, avoiding the exploration of solutions known to be invalid, as

well as allows the user to design an interpretable domain language. This

contrasts with popular ML approaches like Deep Neural Networks, which

are far from interpretable.

The current GGGP state of the art tool, PonyGE2, has two main

shortcomings:

1. The grammar design is specified in a mix of BNF and the target

language (Python), which does not support IDE features like

autocompletion, linting, and type-checking.

2. Programs are unnecessarily converted from derivation trees to a textual

representation and back to derivation trees during parsing.

Motivation

Cross-over & Mutation
The best individuals are
transformed to obtain
new individuals

Fitness Evaluation
Individuals are
evaluated on their
effectiveness at
solving the problem
at hand.

(x * -2) + y

Grammar
(BNF)

Fitness
Function
(Python)

P
o
n
yG

E2

Individual initialisation
The initial population is
initialized with randomly
synthesized individuals.

Performance evaluation

1403…
*

+

yx

2

+

*

x

y

-2

Accuracy:
70%

Example: Classification

70%

1. Linear string

2. Code

3. Abstract syntax
tree

4. Fitness

Grammar:

Motivation

Genetic Engine

We propose Genetic Engine, a pure Python GGGP

framework that can encode solutions both as abstract

trees, also known as derivation trees, as well as using the

linear string approach of PonyGE.

To evaluate the performance of Genetic

Engine, we compared it with PonyGE2 on

5 benchmarks. A higher fitness is better.

Genetic Engine shows to perform on par

with PonyGE2, but it is more expressive

due to Meta-Handlers. Furthermore, the

ergonomic of Genetic Engine is higher, as

it does not require BNF knowledge, and all

Python tools can be applied directly.

When the algorithm has

finished or a pre-

defined fitness was

reached, the model

returns the best

individual.

Shortcoming 2

def fitness_function(n: Number):
predictions = n.evaluate(data)
fitness = f1_score(predictions, ground_truth)
return fitnessclass Number(ABC):

class Plus(Number):
left: Number
right: Number

class Mul(Number):
left: Number
right: Number

Number ::= Number + Number |
Number * Number |
Var | Literal

Var ::= x | y
Literal ::= -2 | -1 |

0 | 1 | 2

