
Consistency is required between the multiple
configuration and implementation files

An Experience Report on Challenges in
Learning the Robot Operating System

Paulo Santos1,2, Miguel Tavares1, Ricardo Cordeiro1,
Alcides Fonseca1, Christopher S. Timperley2

1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
2 Institute for Software Research, Carnegie Mellon University, United States of America

Acknowledgements:
This work was supported by Fundação para a Ciência e
Tecnologia (FCT) in the LASIGE Research Unit under the ref.
(UIDB/00408/2020 and UIDP/00408/2020), and the CMU-Portugal
Dual Degree PhD Program (SFRH/BD/151469/2021), by the CMU-
Portugal project CAMELOT, (POCI-01-0247-FEDER-045915), the
RAP project under the reference (EXPL/CCI-COM/1306/2021), and
the U.S. Air Force Research Laboratory (\OSR-4066).

The authors are grateful for their support. Any opinions, findings,
or recommendations expressed are those of the authors and do
not necessarily reflect those of the US Government.

ROS allows different software components to exchange the
information through messages in a Publisher-Subscriber model.
Nodes communicate between each other by publishing and
subscribing to messages to topics.

Each of three investigators take the ROS Basics in 5 Days (Python) course
at The Construct Sim and maintain notes on any difficulties encountered.

ROS Interface Description
Language ROS Conventions

Domain Knowledge on
Robotic Systems

ROS Architecture Build System

ConcurrencyCommon Programming Errors

The Robot Operating System (ROS) allows developers to build

valuable robots by configuring and reusing off-the-self-components.

However, despite the advantages, the lack of documentation can

present a challenge to novice users.

This work aims to identify what challenges do newcomers to

ROS face, to improve the development experience.

The detection of the most frequent and time-consuming

challenges can guide the development of approaches to improve

the usability and correctness of ROS systems.

IDL File Consistency ()

The unorganized notes are categorized and the
investigators discuss the shared challenges.

The identified challenges are consolidated into a mind
map consisting of seven top-level categories.

Publisher-Subscriber Frequency Impact ()

Shared Memory in Callbacks ()Topic Identifiers ()

Service Message Files ()

Message Loss ()

Message Content Impact in ROS ()Standard Methods ()ROS IDL Discoverability ()

❖ ROS allows developers to connect different
components that may have different event
frequencies.

❖ The process for defining new message
formats requires changing code in multiple
locations, thus increasing the probability of
introducing errors.

❖ The lack of sanity checks by ROS can lead
to mismatch between identifiers defined in
different files when creating a new node.

❖ The first challenge appears in the definition
of the publishing rate and adequate queue
size. Both ROS publisher and subscriber
place their messages on a bounded queue
at a specific publication rate.

❖ The investigators found it difficult to set the
correct queue size and rate and understand
their impact in the robotic system.

.launch .xml .txt

❖ ROS provides components for different
common tasks in robots. Nevertheless, it is
challenging for newcomers to identify the
components responsible for providing
certain information.

❖ Furthermore, it is not explicit how each
message and its parameters impact the
execution of the robotic systems due to a
lack of documentation.

❖ The investigators found it common not to
follow expected good practices in ROS.

❖ In ROS, the lack of good practices can lead
to an unintended behaviour of the system.

sensor = list()

Callback for scan topic
def scan(scan_msg):

sensor = scan_msg.ranges

Callback for odometry topic
def odom(msg):

position : Pose = msg.pose.pose.position
if sensor[90] < 1.0:

print(f"Robot close to wall: {sensor[90]}")
print(f"Robot Position: {position}")

sub1 = rospy.Subscriber('/odom', Odometry, odom)
sub2 = rospy.Subscriber('/scan', LaserScan, scan)
rospy.spin()

❖ A common problem faced by the
investigators is the loss of messages,
leading the robot to an idle state.

❖ This problem may occur when a publisher
publishes to a topic only once before a
subscriber is listening.

❖ If the connection is not latched, the order in
which the subscriber and publisher are
initiated matters.

❖ One example is forgetting to implement
callbacks and hook methods, typically
required for the good functioning of the
robotic systems.

❖ However, there is no warning or clear
message identifying this issue is in ROS.

❖ In ROS, to publish or subscribe to
information one needs to provide the topic
name as a string.

❖ The most common error is the mistyping
of topic names. Since no verification is
done, the system compiles and runs but
does not behave as intended.

a
c

tu
a

l
in

te
n

d
e

d

❖ In ROS, messages and services are
allowed to have the same name.

❖ However, if both types are used in the
same node, the system emits errors that
are not easy to trace back to the different
entities.

❖ The abstraction model of ROS hides the
dependency on the domain knowledge and
the implementation details, hindering the
connection between high-level code and its
impact in the simulation.

Twist

Vector3 linear

Vector3 angular

