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ROS allows different software components to exchange the
information through messages in a Publisher-Subscriber model.
Nodes communicate between each other by publishing and
subscribing to messages to topics.

Each of three investigators take the ROS Basics in 5 Days (Python) course 
at The Construct Sim and maintain notes on any difficulties encountered.
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The Robot Operating System (ROS) allows developers to build

valuable robots by configuring and reusing off-the-self-components.

However, despite the advantages, the lack of documentation can

present a challenge to novice users.

This work aims to identify what challenges do newcomers to

ROS face, to improve the development experience.

The detection of the most frequent and time-consuming

challenges can guide the development of approaches to improve

the usability and correctness of ROS systems.
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The unorganized notes are categorized and the 
investigators discuss the shared challenges.

The identified challenges are consolidated into a mind 
map consisting of seven top-level categories.
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❖ ROS allows developers to connect different
components that may have different event
frequencies.

❖ The process for defining new message
formats requires changing code in multiple
locations, thus increasing the probability of
introducing errors.

❖ The lack of sanity checks by ROS can lead
to mismatch between identifiers defined in
different files when creating a new node.

❖ The first challenge appears in the definition
of the publishing rate and adequate queue
size. Both ROS publisher and subscriber
place their messages on a bounded queue
at a specific publication rate.

❖ The investigators found it difficult to set the
correct queue size and rate and understand
their impact in the robotic system.

.launch .xml .txt

❖ ROS provides components for different
common tasks in robots. Nevertheless, it is
challenging for newcomers to identify the
components responsible for providing
certain information.

❖ Furthermore, it is not explicit how each
message and its parameters impact the
execution of the robotic systems due to a
lack of documentation.

❖ The investigators found it common not to
follow expected good practices in ROS.

❖ In ROS, the lack of good practices can lead
to an unintended behaviour of the system.

sensor = list()

# Callback for scan topic
def scan(scan_msg):

sensor = scan_msg.ranges

# Callback for odometry topic
def odom(msg):

position : Pose = msg.pose.pose.position
if sensor[90] < 1.0:

print(f"Robot close to wall: {sensor[90]}") 
print(f"Robot Position: {position}")

sub1 = rospy.Subscriber('/odom', Odometry, odom)
sub2 = rospy.Subscriber('/scan', LaserScan, scan)
rospy.spin()

❖ A common problem faced by the
investigators is the loss of messages,
leading the robot to an idle state.

❖ This problem may occur when a publisher
publishes to a topic only once before a
subscriber is listening.

❖ If the connection is not latched, the order in
which the subscriber and publisher are
initiated matters.

❖ One example is forgetting to implement
callbacks and hook methods, typically
required for the good functioning of the
robotic systems.

❖ However, there is no warning or clear
message identifying this issue is in ROS.

❖ In ROS, to publish or subscribe to
information one needs to provide the topic
name as a string.

❖ The most common error is the mistyping
of topic names. Since no verification is
done, the system compiles and runs but
does not behave as intended.
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❖ In ROS, messages and services are
allowed to have the same name.

❖ However, if both types are used in the
same node, the system emits errors that
are not easy to trace back to the different
entities.

❖ The abstraction model of ROS hides the
dependency on the domain knowledge and
the implementation details, hindering the
connection between high-level code and its
impact in the simulation.
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