
AMCL Component Specification

rospec: A Domain-Specific Language
for ROS-based Robot Software
Paulo Canelas†,‡, Bradley Schmerl‡, Alcides Fonseca†, and
Christopher S. Timperley‡

† LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
‡ Software and Societal Systems Department, Carnegie Mellon University, US

AMCL Component Specification

The Robot Operating System (ROS) is the de facto open-source
framework for building complex robot software offering reusable and
configurable off-the-shelf components. ROS components often lack
proper documentation, making system configuration challenging and
forcing developers to rely on unverified assumptions, leading to errors.

In this work, we propose a ROS-tailored domain-specific language to
specify component configuration and integration using domain concepts.

Motivation

type alias AfterHumbleVersion: Enum[…, Humble, Iron, Jazzy, Kilted] where {_ >= Humble};
type alias LaserModelType: Enum[Beam, LikelihoodField, LikelihoodFieldProb];

type alias Meter: float32;

message alias RestrictedLoadMap: nav2_msgs/LoadMap {
request field map_url: string;
response field map: nav2_msgs/OccupancyGrid;
response field result: uint8 where {(_ >= 0 and _ <= 3) or _ == 255};

}

node type amcl_type {

} where {
laser_model_type == Beam -> z_hit + z_max + z_rand + z_short == 1;
laser_model_type == LikelihoodField -> z_hit + z_rand == 1;
always_reset_initial_pose -> exists(initial_pose);

}

context distribution: AfterHumbleVersion;

param laser_model_type: LaserModelType;

optional param z_hit: double = 0.5;
optional param z_max: double = 0.05;
optional param z_rand: double = 0.5;
optional param z_short: double = 0.005;
optional param always_reset_initial_pose: bool = false;

} where {
laser_model_type == Beam -> z_hit + z_max + z_rand + z_short == 1;
laser_model_type == LikelihoodField -> z_hit + z_rand == 1;
always_reset_initial_pose -> exists(initial_pose);

}

Case Study System Specification
system {

node instance amcl: amcl_type {

context distribution = Jazzy;

param laser_model_type = Beam;

param z_hit = 0.5;
param z_max = 0.0;
param z_rand = 0.5;

param always_reset_initial_pose = false;
}

}

By specifying properties over component configurations and their
integration, we can detect misconfigurations prior to execution

properties

✘

@qos{sensor_qos}
publishes to particle_cloud: nav2_msgs/ParticleCloud;

@qos{default_qos}
subscribes to /initialpose: geometry_msgs/PoseWithCovarianceStamped

where {count(publishers(_)) == 1};

provides service set_initial_pose: nav2_msgs/SetInitialPose;

ERROR: Dependency laser_model_type == Beam -> z_hit + z_max +
z_rand + z_short == 1 in amcl is not respected.

rospec verifier

ERROR: Publisher not found for the subscriber amcl to the
topic /initialpose.

object_detector

Node Topic
Publish port

airdrone_driver

Subscribe port

Legend

/front/image_raw

Frame: provided image has not the same size
as the camera model or image is not grayscale

airdrone_autonomy pkg

source launch param.

✘

Misconfigurations arise from mismatched expectations between components, potentially
causing dangerous robot behaviors in physical environments.

Type aliases act as documentation providing semantic
information about the purpose of each configuration

Restrictions over types Z3 Solver

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

ROSpec: A Domain-Specific Language for ROS-based Robot So!ware 111:15

D!N"#$T%&$

ω → node type 𝐿 { 𝑀𝐿 ; 𝑀𝑀 ; 𝑀 𝑁𝐿 } ↑ ω, 𝐿 : NodeT(𝑀𝐿 ; 𝑀𝑀 ; 𝑀 𝑁𝐿)

D!N"#$I’()*’+$

ω → 𝐿2 : NodeT(𝑀 ↓𝐿 ; 𝑀 ↓𝑀 ; 𝑀 𝑁 𝑂) ω → 𝑀𝐿𝑀 <: 𝑀 ↓𝐿
𝑁 = 𝑀𝐿𝑀 ↔ {𝐿 ↗↘ 𝑂 |𝐿 : Optional(𝑃 , 𝑂) ≃ 𝑀 ↓𝐿 , 𝐿 ω 𝑀𝐿𝑀 }

ω → node instance 𝐿1 : 𝐿2 { 𝑀𝐿𝑀 ; 𝑀𝑂 } ↑ ω, 𝐿1 ↗↘ 𝑀 ↓𝑀 [𝑁] [𝑀𝑂]

D!S%()$,

ω → 𝑄 ↑ ω↓ 𝑅 ↗↘ publishes to(𝐿,𝑃1) ≃ ω↓ ⇐ ω↓ → 𝑃1 <: 𝑃2
𝑃 ↗↘subscribes to(𝑄, 𝑅2)≃ω↓

check_qos(𝑆1, 𝑆2)𝑃 ↗↘publishes to(𝑄) with 𝑆𝑇𝑃 (𝑆1)≃ω↓, 𝑃↓ ↗↘subscribes to(𝑄) with 𝑆𝑇𝑃 (𝑆2)≃ω↓

𝑅 ↗↘ broadcasts(𝐿1, 𝐿2) ≃ ω↓
𝑃 ↗↘listens(𝑄1,𝑄2)≃ω↓

𝐿1 = 𝐿2
𝑃 ↗↘broadcasts(𝑄1,𝑄2)≃ω↓,𝑃↓ ↗↘broadcasts(𝑄2,𝑄3)≃ω↓

ω → system { 𝑄 } ↑ ω↓

Fig. 10. Definition Formation Rules. ω → 𝑄 ↑ ω

are present in many miscon!gurations identi!ed in prior work [10]. The grammar of ROSpec is
de!ned in Figure 9.
ROSpec is a typed language where nodes, parameters, topics, and messages have types. The

language includes primitive ROS types, such as int, bool, float, and string and their bit-width
variations (e.g., int8, float64), omitted in the grammar. It also has user-de!ned types (t), de!ning
custom message types such as geometry_msgs/Twist. The type variables are replaced with the
concrete type they alias. In the case of message types, like geometry_msgs/Twist, the concrete
type is a struct, containing named and typed !elds, similar to C’s structs. Support for optional
parameters and arguments is provided through the Optional type, which annotates a type with a
default value when the caller omits it. This feature resembles Python’s use of default arguments.

Liquid types are the main engine used for modeling semantic properties [50], available whenever
a regular type can occur. A type T can be annotated with a re!nement (x : T where { e }) where 𝑂
can refer to 𝐿 , restricting their possible values. The traditional Liquid Types style draws re!nements
from a decidable logic. While this limitation restricts what users can model, we show in Section 6
that these can be expressive enough to detect several real-world miscon!gurations.
To support type-checking, we rely on a type context (ω) that contains three types of mappings:

a) mappings from variables to types (𝐿 : 𝑃), used for node types, plugin types, and instances; b)
type alias information (𝑇 = 𝑃) used to save the human-readable name of a given structure type; and
c) connection and transform mappings between nodes and topics, such as representing that a given
node publishes to or subscribes to a topic, and broadcast or listens to a transform.

5.2 Formation Rules
The typing rules in Figure 10 validate that a given speci!cation is correct. We highlight in di"erent
colors the core premises that are explained here in the main body of the text, also highlighted with
the corresponding color.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2025.

Case Study Evaluation

+

@color_format{RGB8}

@color_format{Grayscale}

Analyzed 182 questions from Stack Exchange, from which,

0, 255, 4, -1

SAT, SAT, UNSAT, UNSAT

61
Detectable

23
Documentation

28 + 39
Missing Info /
Out of Scope

31
Not Supported

object_detector

Node Topic
Publish port

airdrone_driver

Subscribe port

Legend

/front/image_raw

Frame: provided image has not the same size
as the camera model or image is not grayscale

airdrone_autonomy pkg

source launch param.

Contextual information allows developers to specify
deployment-specific requirements and dependencies

basic_navigator /initialpose

set_initial_pose

amcl

policy instance sensor_qos: qos {
setting history = KeepAll;
setting depth = 1;
setting reliability = BestEffort;

}

Sensor Quality of Service (QoS)

ERROR: count(publishers(_)) == 1 in
/initialpose in amcl is not respected.

We evaluated rospec on
robot navigating a warehouse

environment through specification and
configuration of configurations across

including navigation,
localization, and obstacle avoidance.

Acknowledgements:
This work was supported by Fundação para a Ciência e
Tecnologia (FCT) in the LASIGE Research Unit under the ref.
(UID/00408/2025 and EXPL/CCI-COM/1306/2021), and the
CMU Portugal Dual PhD program (SFRH/BD/151469/2021).

