
An Experience Report on
Challenges in Learning the
Robot Operating System

Paulo Santos !,#, Miguel Tavares !, Ricardo Cordeiro !, Alcides Fonseca !, Christopher S. Timperley #

!LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa
"Institute for Software Research, School of Computer Science, Carnegie Mellon University

The Robot Operating System (ROS)

2

ROS allows developers to reuse existing componentes in their robots
Abstracts the implementation details of several components of

their robot, from odometry to route planning.

Understand the experience of
newcomers when learning the

Robot Operating System

The Investigators

4

Paulo CanelasPaulo Canelas
Ph.D. Student
No previous experience with robotic systems.

Miguel Tavares
MSc. Student
Experience with Thymio [1].

Miguel Tavares

Ricardo Cordeiro
MSc. Student
No previous experience with robotic systems.

[1] Fanny Riedo. 2015. Thymio a holistic approach to designing accessible educational robots. (2015).

ROS 1 Basics course from The Construct Sim

5

Adjudication and Discussion

6

The unorganized notes are categorized and the investigators discuss the shared challenges.

Creation of the Mind Map

7

We identified seven high-level challenges

8

Build System

9

IDL File Consistency ()

v The process for defining new message formats requires changing code in
multiple locations, thus increasing the probability of introducing errors.

v The lack of sanity checks by ROS can lead to mismatch between identifiers
defined in different files when creating a new node.

Consistency is required between the multiple
configuration and implementation files

.launch .xml .txt

<launch>
<node pkg ="module5_6_pkg"

type="client.py"
name="service_client"
output="screen" />

</launch>

import rospy
from module5_6_pkg.srv import DurationServiceMessage,

DurationServiceMessageResponse

rospy.init_node('service_client')
service = rospy.Service('/myservice', DurationServiceMessage,
my_callback)

add_service_files(
FILES
DurationServiceMessage.srv

)

of investigators who
identified the challenge

ROS Interface Description Language

10

ROS IDL Discoverability ()

v ROS provides components for different common tasks in robots.
Nevertheless, it is challenging to identify the components responsible
for newcomers to identify components responsible for providing
certain information.

v Furthermore, it is not explicit how each message and its
parameters impact the execution of the robotic systems due to a lack
of documentation.

Which topic responsible for the drone position?

user:~/catkin_ws$ rostopic list
/camera_info
/clock
/cmd_vel
/drone/down_camera/image_raw
/drone/down_camera/image_raw/compressed
/drone/down_camera/image_raw/compressed/parameter_descriptions
/drone/down_camera/image_raw/compressed/parameter_updates
/drone/down_camera/image_raw/compressedDepth
/drone/down_camera/image_raw/compressedDepth/parameter_descriptions
/drone/down_camera/image_raw/compressedDepth/parameter_updates
/drone/down_camera/image_raw/theora
/drone/down_camera/image_raw/theora/parameter_descriptions
/drone/down_camera/image_raw/theora/parameter_updates
/drone/front_camera/image_raw
/drone/front_camera/image_raw/compressed
/drone/front_camera/image_raw/compressed/parameter_descriptions
/drone/front_camera/image_raw/compressed/parameter_updates
/drone/front_camera/image_raw/compressedDepth
/drone/front_camera/image_raw/compressedDepth/parameter_descriptions
/drone/front_camera/image_raw/compressedDepth/parameter_updates
/drone/front_camera/image_raw/theora
/drone/front_camera/image_raw/theora/parameter_descriptions
/drone/front_camera/image_raw/theora/parameter_updates
/drone/gt_acc
/drone/gt_pose
/drone/gt_vel
/drone/imu
/drone/land
/drone/posctrl
/drone/reset
/drone/sonar
/drone/takeoff
/drone/vel_mode
/gazebo/link_states
/gazebo/model_states
/gazebo/parameter_descriptions
/gazebo/parameter_updates
/gazebo/set_link_state
/gazebo/set_model_state
/rosout
/rosout_agg

of investigators who
identified the challenge

Common Programming Errors

11

Topic Identifiers ()

v In ROS, to publish or subscribe to information one needs to provide the topic
name as a string.

v One of the most common error is the mistyping of topic names. Since no
verification is done, the system compiles and runs but does not behave as
intended.

actual

intended

rospy.init_node('moverobot')
pub = rospy.Publisher('\cmd_vel', Twist, queue_size=1)

rospy.init_node('moverobot')
pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1)

of investigators who
identified the challenge

ROS Conventions

12

Standard Methods ()

v The investigators found it common not to follow expected good practices. In
ROS, the lack of good practices can lead to an unintended behaviour of the
system.

v One example is forgetting to implement callbacks and hook methods, typically
associated with the good functioning of the robotic system. However, there is no
warning or clear message identifying this issue in ROS.

pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1)
position = Twist()

def shutdown_publish():
global pub, position

position.linear = Vector3(0, 0, 0)
position.angular = Vector3(0, 0, 0)

pub.publish(position)

rospy.on_shutdown(shutdown_publish)

of investigators who
identified the challenge

Concurrency
Shared Memory in Callbacks ()

13

sensor = list()

Callback for scan topic
def scan(scan_msg):

sensor = scan_msg.ranges

Callback for odometry topic
def odom(msg):

position : Pose = msg.pose.pose.position
if sensor[90] < 1.0:

print(f"Robot close to wall: {sensor[90]}")
print(f"Robot Position: {position}")

sub1 = rospy.Subscriber('/odom', Odometry, odom)
sub2 = rospy.Subscriber('/scan', LaserScan, scan)
rospy.spin()

v The investigators found concurrency related issues
were not properly addressed by the ROS API nor The
Construct Sim.

v Race conditions can lead to an unintended behaviour
of the robotic system. A possible solution is the
introduction of concurrency safety procedures (e.g.,
mutex). However, the use of a mutex may change the
frequency at which the callback operates.

of investigators who
identified the challenge

Concurrency

14

Message Loss ()

v A common problem faced by the investigators is the loss of messages when a
node publishes to a topic only once before the subscriber is listening, leading the
robot to an idle state.

v When a node that uses actions or services is launched and the corresponding
server is not ready, the published messages are silently lost.

vROS allows the persistence of the last published message to a topic by “latching”
the connection.

If the connection is not latched, the order in which the subscriber and
publisher are initiated matters.

of investigators who
identified the challenge

Domain Knowledge on Robotic Systems

15

Message Content Impact in ROS ()

v The abstraction model of ROS hides the dependency on the domain
knowledge and the implementation details, hindering the connection between
high-level code and its impact in the simulation. Twist

Vector3 linear

Vector3 angular

of investigators who
identified the challenge

How to estimate and understand the impact of the message content with the real-world behavior

v For instance, how does the velocity value published
affects the real speed of the robot.

v When trying to smoothly land the drone, considering
the messages publishing frequency and their content is
not enough to achieve this objective.

ROS Architecture

16

Publisher-Subscriber Frequency Impact ()

v This challenge appears in the definition of the publishing rate and the adequate queue
size. Both ROS publisher and subscriber place their messages on a bounded queue at a
specific publication rate.

v A component may need to perform an action each millisecond, but the information
provider only emits updated data each second. ROS developers can use both components
without considering the mismatch in the assumed and provided frequencies.

of investigators who
identified the challenge

Create the publisher
pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1)

Create the message
message = Twist()
message.linear = Vector3(0.5, 0, 0)

Define the rate
rate = rospy.Rate(10)

Publish the speed at fixed rate of 10 Hz
while not rospy.is_shutdown():

message.linear.x += 0.01
pub.publish(message)
rate.sleep()

Challenge 1: What is the proper queue size?

Challenge 2: Considering the queue size, what is the proper publishing rate?

v Dependency between the queue size and the publishing rate.

v The wrong configuration combination can lead to unintended robot
behavior due to the loss of messages.

What next?

17

Usability Studies Documentation Improvement

Introduction and Improvement of Verification Techniques Architectural Robot and System Verification

ROSD I S C O V E R

[2] André Santos, Alcino Cunha, and Nuno Macedo. The High-Assurance ROS Framework. 2021.
[3] Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, and Claire Le Goues. ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems. 2022.
[4] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher Steven Timperley. Simulation for Robotics Test Automation: Developer Perspectives. 2021.

v Help design more in-depth
usability studies with larger
groups.

v Difficulty of applying good
practices in ROS and its impact
on the robot’s behavior.

v Encourage the improvement of the documentation:
v Component’s interface;
v Indented communication model;
v Frequency;
v Bounds on messages values.

v Analysis of the architecture of the robot and systems
configuration files to provide novice and expert users the
information needed to correct existing problems.

v Introduction of specification techniques of the systems
architecture by the user and the formal static verification [4].

This work was supported by Fundação para a Ciência e Tecnologia (FCT) in the LASIGE Research Unit under the ref. (UIDB/00408/2020 and
UIDP/00408/2020), and the CMU-Portugal Dual Degree PhD Program (SFRH/BD/151469/2021), by the CMU-Portugal project CAMELOT, (POCI-01-
0247-FEDER-045915), the RAP project under the reference (EXPL/CCI-COM/1306/2021), and the U.S. Air Force Research Laboratory (\OSR-4066).

The authors are grateful for their support. Any opinions, findings, or recommendations expressed are those of the authors and do not necessarily
reflect those of the US Government.

An Experience Report on
Challenges in Learning the
Robot Operating System

