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int x = “hello world”;
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Software Verification for finding bugs
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Refinement Types

@Refinement(“0 <= red && red <= 255”)
int red;

Liquid Types
red == 200 + 90 -> 

0 <= red && red <= 255
SMT Solver

red = 200;

red = 200 + 90;

Logical predicate
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ML(1991) Haskell (2014)C (2012)

Javascript (2012)

Rust (2022)Scala (2016)

Typescript (2016)

Division by zero
Array accesses

Classes of Errors
Protocol violations
Security Issues

Refinement Types and Liquid Types
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Our Contributions

Design

User Study
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DESIGN

6



Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Three requirements for the language
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Refinements must be optional

Refinements should be expressive and idiomatic

Type-checking should be decidable

“0 <= red”

@Refinement

QF-UFLA 
SMT-Solvers



Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Syntax Survey with 50 collected answers
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Not 
acceptable

Acceptable

Preferable

@Refinement(“_ >= 0 && _ <= 100”)
public static int percentageFromGrade(@Refinement(“grade >= 0”) int grade,

@Refinement(“scale > 0”)  int scale)

@Refinement(“{grade >= 0} -> {scale > 0} -> {_ >= 0 && scale > 0}”)
public static int percentageFromGrade(int grade, int scale)

A

B

A

B
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LiquidJava Prototype

@Refinement(“0 <= red && red <= 255”) 
int red = 290;

int inRange(int a, @Refinement(“b > a”) int b ){…}

inRange(10, 5);
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LiquidJava Prototype
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unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind
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LiquidJava Prototype
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unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

@StateSet({"unconnected", "bound", "connected", "closed"})
@ExternalRefinements("java.net.Socket")
interface SocketRefinements{

@StateRefinement(from = "bound(this)", 
to = "connected(this)")

void connect(SocketAddress addr);
...

}

https://docs.oracle.com/javase/7/docs/api/java/net/SocketAddress.html
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LiquidJava Prototype
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LiquidJava Prototype
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LiquidJava Prototype

16



Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

USER STUDY
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Four research questions

1 Are refinements easy to understand? 

2 Is it easier and faster to find implementation errors using 
LiquidJava than with plain Java? 

3 How hard is it to annotate a program with refinements? 

4 Are developers open to using LiquidJava in their projects?

30 Very Familiar with Java56%

80% Vaguely or Not Familiar
with Refinement Types
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Study configuration
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Study Conclusions
Intuitive refinements

@Refinement("-25 <= x && x <= 45")
int x;
//Correct:
x = 0;
//Incorrect:
x = 46;

Overview
Video and website

Add annotations
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Study Conclusions

LiquidJava helped developers find the bugs in code
Best results for lesser-known classes
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Study Conclusions

Participants are interested in using LiquidJava

Developers liked the error reporting and state refinements
but want better better plugin integration and error messages
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