
USABILITY-ORIENTED DESIGN OF
LIQUID TYPES FOR JAVA

Catarina
Gamboa

Paulo
Canelas

Christopher
Timperley

Alcides
Fonseca

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

int x = “hello world”;

2

Software Verification for finding bugs

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023 3

Refinement Types

@Refinement(“0 <= red && red <= 255”)
int red;

Liquid Types
red == 200 + 90 ->

0 <= red && red <= 255
SMT Solver

red = 200;

red = 200 + 90;

Logical predicate

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023 4

ML(1991) Haskell (2014)C (2012)

Javascript (2012)

Rust (2022)Scala (2016)

Typescript (2016)

Division by zero
Array accesses

Classes of Errors
Protocol violations
Security Issues

Refinement Types and Liquid Types

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023 5

Our Contributions

Design

User Study

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

DESIGN

6

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Three requirements for the language

7

Refinements must be optional

Refinements should be expressive and idiomatic

Type-checking should be decidable

“0 <= red”

@Refinement

QF-UFLA
SMT-Solvers

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Syntax Survey with 50 collected answers

8

Not
acceptable

Acceptable

Preferable

@Refinement(“_ >= 0 && _ <= 100”)
public static int percentageFromGrade(@Refinement(“grade >= 0”) int grade,

@Refinement(“scale > 0”) int scale)

@Refinement(“{grade >= 0} -> {scale > 0} -> {_ >= 0 && scale > 0}”)
public static int percentageFromGrade(int grade, int scale)

A

B

A

B

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

@Refinement(“0 <= red && red <= 255”)
int red = 290;

int inRange(int a, @Refinement(“b > a”) int b){…}

inRange(10, 5);

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

10

unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

11

unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

@StateSet({"unconnected", "bound", "connected", "closed"})
@ExternalRefinements("java.net.Socket")
interface SocketRefinements{

@StateRefinement(from = "bound(this)",
to = "connected(this)")

void connect(SocketAddress addr);
...

}

https://docs.oracle.com/javase/7/docs/api/java/net/SocketAddress.html

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

12

unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

@StateSet({"unconnected", "bound", "connected", "closed"})
@ExternalRefinements("java.net.Socket")
interface SocketRefinements{

@StateRefinement(from = "bound(this)",
to = "connected(this)")

void connect(SocketAddress addr);

@StateRefinement(from = ”connected(this)")
void sendUrgentData(int n); ...

}

https://docs.oracle.com/javase/7/docs/api/java/net/SocketAddress.html

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

13

unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

@StateSet({"unconnected", "bound", "connected", "closed"})
@ExternalRefinements("java.net.Socket")
interface SocketRefinements{

@StateRefinement(from = "bound(this)",
to = "connected(this)")

void connect(SocketAddress addr);

@StateRefinement(from = ”connected(this)")
void sendUrgentData(int n); ...

}

https://docs.oracle.com/javase/7/docs/api/java/net/SocketAddress.html

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

14

unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

@StateSet({"unconnected", "bound", "connected", "closed"})
@ExternalRefinements("java.net.Socket")
interface SocketRefinements{

@StateRefinement(from = "bound(this)",
to = "connected(this)")

void connect(SocketAddress addr);

@StateRefinement(from = ”connected(this)")
void sendUrgentData(int n); ...

}

https://docs.oracle.com/javase/7/docs/api/java/net/SocketAddress.html

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

15

unconnected

bound

connected

closed

sendUrgentData

close

connect
close

bind

@StateSet({"unconnected", "bound", "connected", "closed"})
@ExternalRefinements("java.net.Socket")
interface SocketRefinements{

@StateRefinement(from = "bound(this)",
to = "connected(this)")

void connect(SocketAddress addr);

@StateRefinement(from = ”connected(this)")
void sendUrgentData(int n); ...

}

https://docs.oracle.com/javase/7/docs/api/java/net/SocketAddress.html

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

LiquidJava Prototype

16

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

USER STUDY

17

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Four research questions

1 Are refinements easy to understand?

2 Is it easier and faster to find implementation errors using
LiquidJava than with plain Java?

3 How hard is it to annotate a program with refinements?

4 Are developers open to using LiquidJava in their projects?

30 Very Familiar with Java56%

80% Vaguely or Not Familiar
with Refinement Types

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study configuration

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study Conclusions
Intuitive refinements

@Refinement("-25 <= x && x <= 45")
int x;
//Correct:
x = 0;
//Incorrect:
x = 46;

Overview
Video and website

Add annotations

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study Conclusions

LiquidJava helped developers find the bugs in code
Best results for lesser-known classes

Usability-Oriented Design of Liquid Types for Java, Gamboa et al. 2023

Study Conclusions

Participants are interested in using LiquidJava

Developers liked the error reporting and state refinements
but want better better plugin integration and error messages

USABILITY-ORIENTED DESIGN OF
LIQUID TYPES FOR JAVA

cgamboa@andrew.cmu.edu

