[ES3D hiiow's fC't
Software and Societal Devsdrrmeal (&1 2§ 2= W para a Ciéncia

and Societal .
ttttttttttttttttt Portugal a Tecnologia

Are Large Language Models
Memorizing Bug Benchmarks?

Daniel Claudia
Ramos Mamede

Paulo Catarina Claire
Canelas Gamboa Le Goues

Large Language Models are everywhere yet there is still a
big gap between benchmark performance and reality

Large Language Models are everywhere yet there is still a
big gap between benchmark performance and reality

Codegen-6B for bug repair

! |
] 1int start = 0;

1 2 // get a good guess on the size of the result buffer so !
| 3 // it doesnt have to double if it goes over a bit !
1 4 int increase = 0; !
1 5 // count the replacement text elements that are larger !
\ 6 // than their corresponding text being replaced !

Defects4J, Bug 39 (in Lang project)

Large Language Models are everywhere yet there is still a
big gap between benchmark performance and reality

Codegen-6B for bug repair
Coe —mmmmmm e 1 Prompt S

!)
] 1int start = 0;
1 2 // get a good guess on the size of the result buffer so !
| 3 // it doesnt have to double if it goes over a bit !
1 4 int increase = 0; !
| 5 // count the replacement text elements that are larger !
6 // than their corresponding text being replaceg !
b_—_—-—-—_—_—_—-—-—_—_—_—-—_—_—_—-—_—-—-—-\
‘3 for (int i = @; i < searchlList.length; i+) { N
9 if (searchList[i] = null || replaccmentList[i] = null) { 1
110 continue; :
119 } !
I int greater = replacementList[i].length() - searchList[i].length(); I
I3 if (greater > 0) { I
1, increase += 3 % greater; // assume 3 matches I
ls } I
116} i
‘{7 // have upper-bound at 20% increase, then let Java take... 7
N e = = — -

Defects4J, Bug 39 (in Lang project)

Large Language Models are everywhere yet there is still a
big gap between benchmark performance and reality

Codegen-6B for bug repair

eFFT T T T T T T EFEEEEEEEEEE -~
|
] 1int start = 0;
1 2 // get a good guess on the size of the result buffer so
| 3 // it doesnt have to double if it goes over a bit
1 4 int increase = 0;
1 5 // count the replacement text elements that are larger
\ 6 // than their corresponding text being replaceg

=== e il Sir== === Generated -
/8 for (int i = @; i < searchList.length; i++) {
' 9 if (searchList[i] = null || replacementList[i] = null) {
110 continue;
119 }
I'1 int greater = replacementList[i].length() - searchList[i].length();
I3 if (greater > 0) {
WA increase += 3 % greater; // assume 3 matches
ls }
163}
‘{7 // have upper-bound at 20% increase, then let Java take...

-

e e o o e e e e e e R R R e S R M M e e e e e e e

Defects4J, Bug 39 (in Lang project)

\

- — -

— = = o =

/

Original fix file

1 int start = 0;

2 // get a good guess on the size of the result buffer so
3 // it doesnt have to double if it goes over a bit

4 int increase = 0;

5 // count the replacement text elements that are larger
6 // than their corresponding text being replaced

7/

8 for (int i = @; i < searchList.length; i+) {

9 if (searchList[i] = null || replacementList[i] = null) {

10 continue;

atal }

1) int greater = replacementList[i].length() - searchList[i].length();
13 if (greater > 0) {

14 increase += 3 % greater; // assume 3 matches

1143) }

16 }

17 // have upper-bound at 20% increase, then let Java take...

Large Language Models are everywhere yet there is still a
big gap between benchmark performance and reality

Codegen-6B for bug repair

eFFT T T T T T T EFEEEEEEEEEE -~
|
] 1int start = 0;
1 2 // get a good guess on the size of the result buffer so
| 3 // it doesnt have to double if it goes over a bit
1 4 int increase = 0;
1 5 // count the replacement text elements that are larger
\ 6 // than their corresponding text being replaceg

=== e il Sir== === Generated -
/8 for (int i = @; i < searchList.length; i++) {
' 9 if (searchList[i] = null || replacementList[i] = null) {
110 continue;
119 }
I'1 int greater = replacementList[i].length() - searchList[i].length();
I3 if (greater > 0) {
WA increase += 3 % greater; // assume 3 matches
ls }
163}
‘{7 // have upper-bound at 20% increase, then let Java take...

-

e e o o e e e e e e R R R e S R M M e e e e e e e

Defects4J, Bug 39 (in Lang project)

\

- — -

— = = o =

/

Original fix file

1 int start = 0;

2 // get a good guess on the size of the result buffer so
3 // it doesnt have to double if it goes over a bit

4 int increase = 0;

5 // count the replacement text elements that are larger
6 // than their corresponding text being replaced

7/

8 for (int i = @; i < searchlList.length; i+) {

9 if (searchList[i] = null || replacementList[i] = null) {

10 continue;

11 }

2 int greater = replacementList[i].length() - searchList[i].length();
13 if (greater > 0) {

14 increase += 3 % greater; // assume 3 matches

1143) }

16 }

17 // have upper-bound at 20% increase, then let Java take...

Large Language Models are everywhere yet there is still a
big gap between benchmark performance and reality

Codegen-6B for bug repair

¢FF - T T T T T T EEEEEEEEET

|
] 1int start = 0;
1 2 // get a good guess on the size of the result buffer so
| 3 // it doesnt have to double if it goes over a bit
1 4 int increase = 0;
1 5 // count the replacement text elements that are larger
\ 6 // than their corresponding text being replaceg
=== e il Sir== === Generated -
/3 for (int i = @; i < searchlList.length; i+) {
' 9 if (searchList[i] = null || replacementList[i] = null) {
110 continue;
111 }
' int greater = replacementList[i].length() - searchList[i].length();
I3 if (greater > 0) {
WA increase += 3 % greater; // assume 3 matches
ls }
1163

‘{7 // have upper-bound at 20% increase, then let Java take...
-

e e o o e e e e e e R R R e S R M M e e e e e e e

Defects4J, Bug 39 (in Lang project)

m_\

7

- — -

— = = o =

/

Original fix file

1 int start = 0;
2 // get a good guess on the size of the result b
3 // it doesnt have to double if it goes over a B
4 int increase = 0;
5 // count the replacement text elements that ard
6 // than their corresponding text being replaced
7/

8 for (int i = @; i < searchlList.length; i+) {

A

9 if (searchList[i] = null || replacementList[i] = null) {

10 continue;

11 }

2 int greater = replacementList[i].length() - searchList[i].length();
13 if (greater > 0) {

14 increase += 3 * greater; // assume 3 matches

1143) }

16 }

17 // have upper-bound at 20% increase, then let Java take...

Memorization often happens due to data leakage which is
hard to detect and quantify @

Xu, Ruijie, et al. "Benchmarking benchmark leakage in large language models." arXiv preprint arXiv:2404.18824 (2024).

Memorization often happens due to data leakage which is
hard to detect and quantify @

We don’t know if the
model was trained
on the test set

Xu, Ruijie, et al. "Benchmarking benchmark leakage in large language models." arXiv preprint arXiv:2404.18824 (2024).

Memorization often happens due to data leakage which is
hard to detect and quantify @

ok

We don'’t know if the Model weights are
model was trained often unavailable
on the test set

Xu, Ruijie, et al. "Benchmarking benchmark leakage in large language models." arXiv preprint arXiv:2404.18824 (2024).

10

Memorization often happens due to data leakage which is
hard to detect and quantify @

ok

We don’t know if the Model weights are Hard to define a metric

model was trained often unavailable to detect leakage
on the test set

Xu, Ruijie, et al. "Benchmarking benchmark leakage in large language models." arXiv preprint arXiv:2404.18824 (2024). I

We designed an experimental setup to detect
memorization across models and bug benchmarks

LEAKAGE DETECTION

13

We designed an experimental setup to detect
memorization across models and bug benchmarks

* BigCode

The Stack is an open governance interface between the Al community and the open source community.

MEMBERSHIP Am | in The Stack?

As part of the BigCode project, we released and maintain ,a 67 TB dataset of source code over 600 programming languages. One of

LEAKAGE DETECTION

our goals in this project is to give people agency over their source code by letting them decide whether or not it should be used to develop and

~ is my data part of The Stack ? e e e s e L O TS Tt s A i e ps

This tool lets you check if a repository under a given username is part of The Stack dataset. Would you like to have your data removed from

future versions of The Stack? You can opt-out following the instructions here. Note that previous opt-outs might still be displayed in the release

candidate (denoted with), which will be removed for the release.

Note: The Stack v2.0 is built from public GitHub code provided by the . It may include repositories that are no longer
present on GitHub but were archived by Software Heritage. Before training the StarCoder 1 and 2 models an additional Pll pipeline was run to
remove names, emails, passwords and AP keys from the code files. For more information see the

Data source:

Model training:
o StarCoderl was trained on repos listed in v1.2.

o StarCoder2 was trained on repos listed in v2.0.1.

The Stack version:

v2.1.0

Your GitHub username:

We designed an experimental setup to detect
memorization across models and bug benchmarks

LEAKAGE DETECTION

MEMBERSHIP
~ is my data part of The Stack ?

NEG. LOG LIKELIHOOD

~ how surprised is the model by
my input ?

15

We designed an experimental setup to detect
memorization across models and bug benchmarks

LEAKAGE DETECTION

MEMBERSHIP

~ is my data part of The Stack ?

NEG. LOG LIKELIHOOD

~ how surprised is the model by
my input ?

5-GRAM ACCURACY

~ how close is the model output
to the ground truth ?

16

We designed an experi

mental setup to detect

memorization across models and bug benchmarks

MODEL SELECTION

9 open-source models

708 |

\ Llama 3.1

(...
CodelLLama

CodeGemma

)

CodeGen]

2B

17

We designed an experimental setup to detect
memorization across models and bug benchmarks

BENCHMARKS

5 Bug Benchmarks

BugsC++ GitBug-Java
BugsinPy Defects4J

Swebench-Lite

New, likely unseen data

Github repos in

Java and Python

Our findings show that...

All benchmarks were part of The Stack to some degree.

Membership (%)

Dataset Year

Defects4J 2019 80.0 80.0 80.0
BugsInPy 2020 941 ©64.7 064.7
BugsC++ 2021 60.9 609 652
Gitbug-Java 2023 61.1 426 38.9

SweBench-Lite 2024 833 917 833

Our findings show that...

All benchmarks were part of The Stack to some degree.

< D4J, SWEBench Lite

Membership (%)
Dataset Year

2 Defects4J 2019 80.0 80.0 80.0
BugsInPy 2020 941 ©64.7 064.7
BugsC++ 2021 60.9 609 652

Gitbug-Java 2023 61.1 426 38.9

===> SweBench-Lite 2024 83.3 917 833 | A

Our findings show that...

All benchmarks were part of The Stack to some degree.

“ D4J, SWEBench Lite & Gitbug-Java

Membership (%)

Dataset Year

Defects4J 2019 80.0 80.0 80.0
BugsInPy 2020 941 ©64.7 064.7
BugsC++ 2021 60.9 609 652
£ Gitbug-Java 2023 61.1 426 38.9

SweBench-Lite 2024 833 917 833

Our findings show that...

NEG LOG LIKELIHOOD Prominent benchmarks elicit lower NLLs across all models.

NLL by Model and Dataset

1.0

0.8 1

0.6 1

0.4 1

0.2 1

00" Codegen 6B Multi LLama 3.1 8B LLama 3.1 70B StarCoder 7B Gemma 2 278 Mistral 7B
(illelf'esc)tSAJ BN BugsinPy B BugsC++ [Gitbug-Java [SWEBench Lite S r;:;«ojsava geei\)r:):ython

Our findings show that...

NEG LOG LIKELIHOOD Prominent benchmarks elicit lower NLLs across all models.

Y D4J, SWEBench Lite

NLL by Model and Dataset

1.0
0.8 1
0.6 1
0.4 1
0.2 1 I
0.0 l T T T T
Codegen 6B Multi LLama 3.1 8B LLama 3.1 70B StarCoder 7B Gemma 2 27B Mistral 7B
(i/.ifgc)tslu BN BugsinPy B BugsC++ [X3 Gitbug-Java [SWEBench Lite Il l;:’\;vojsava g:;:)ls’ython

Our findings show that...

All benchmarks were part of The Stack to some degree.

NEG LOG LIKELIHOOD Prominent benchmarks elicit lower NLLs across all models.

¥ D4J, SWEBench Lite “& New and unseen data, Gitbug-Java

NLL by Model and Dataset

1.0

0.8 -

0.6 1

0.4 -

0.2 1

00" Codegen 6B Multi LLama 3.1 8B LLama 3.1 70B StarCoder 7B Gemma 2 278 Mistral 7B
(illelf'esgtsq BN BugsinPy B BugsC++ [Gitbug-Java [SWEBench Lite N r;eepwojsava ::;:):ython

24

Our findings show that...

NLL Ratios for Codegen 6B M

All benchmarks were part

Prominent bench

NLL by Mode
1.0 1
0.8 A ;
Defects4) BugsinPy Bugs Gitbug SWEBench New
0.6 1 (v1.5) C++ Java Lite Java Python
0.4 1
02 > Potential memorization signals.
0.0 . : : It is ~5x more familiar with D4J than newer data.
k Codegen 6B Multlj LLama 3.1 8B LLama 3.1 70B

Our findings show that...

1.01
0.8 1
0.6 1
0.4 1
0.2 1

0.0

All benchmarks were part

Prominent bench

Codegen' 6B Multi

LLama 3.1 8B

LLama 3.1 70B

NLL Ratios for LLama 3.1 70B

Defects4) BugsinPy Bugs Gitbug SWEBench New New
(v1.5) C++ Java Lite Java Python

More consistent behavior across
benchmarks.

26

Our findings show that...
|

5-GRAM ACCURACY Prominent benchmarks elicit higher 5-gram matches across
model families.

5-gram Accuracy by Model and Dataset

0.8 1
0.6 1
0.4 1
0.2 1
0.0 - T T T
Codegen 6B Multi LLama 3.1 8B LLama 3.1 70B StarCoder 7B Gemma 2 27B Mistral 7B
Defects4) New Java New Python

— (v1.5) BN BugsinPy @ BugsC++ [Gitbug-Java [SWEBench Lite N Repos Repos

Our findings show that...
|

5-GRAM ACCURACY Prominent benchmarks elicit higher 5-gram matches across
model families.

¥ D4J

5-gram Accuracy by Model and Dataset

0.8 1

0.6 1

0.4 1

0.2 4

0.0 . T : . - .
Codegen 6B Multi LLama 3.1 8B LLama 3.1 70B StarCoder 7B Gemma 2 27B Mistral 7B

Defects4 . . New Java New Python
— (v1.5)) BN BugsinPy @ BugsC++ [Gitbug-Java [SWEBench Lite N Repon Reposy

Our findings show that...

5-GRAM ACCURACY Prominent benchmarks elicit higher 5-gram matches across
model families.

¥ D4J & New and unseen data, Gitbug-Java

5-gram Accuracy by Model and Dataset

0.8 1
0.6 1
0.4 1
0.2 1
0.0
Codegen 6B Multi LLama 3.1 8B LLama 3.1 70B StarCoder 7B Gemma 2 27B Mistral 7B
Defects4) New Java New Python

— (v1.5) BN BugsinPy @ BugsC++ [Gitbug-Java [SWEBench Lite N Repos — Repos 29

Our findings show that...

& Data leakage is an especially significant issue for
Defects4J (V1.5)

30

Our findings show that...

& Data leakage is an especially significant issue for
Defects4J (V1.5)

Smaller models, trained on far less data, seem more prone to
memorization

31

Our findings show that...

& Data leakage is an especially significant issue for
Defects4J (V1.5)

Smaller models, trained on far less data, seem more prone to
memorization

Bigger and more recent models seem to exhibit lower
memorization of benchmark solutions

32

If we are not careful with benchmark selection, we risk
reporting inflated model performance due to data leakage

So, we suggest...

Evaluate on
benchmarks with
new data

33

If we are not careful with benchmark selection, we risk
reporting inflated model performance due to data leakage

So, we suggest...

4 '(\

Evaluate on Monitor leakage risk over time
benchmarks with by computing membership,
new data NLL and 5-gram matches

If we are not careful with benchmark selection, we risk
reporting inflated model performance due to data leakage

So, we suggest...

Evaluate on Monitor leakage risk over time Carefully interpret
benchmarks with by computing membership, benchmarks numbers
new data NLL and 5-gram matches

35

Memorization often happens due to data leakage which is

hard to detect and quantify @

We don’t know if the
model was trained
on the test set

Model weights are
often unavailable

£

Hard to define a metric
to detect leakage

We designed an experimental setup to detect
memorization across models and bug benchmarks

LEAKAGE DETECTION

~ is my data part of The Stack ?

NEG. LOG LIKELIHOOD

~ how surprised is the model by
my input ?
5-GRAM ACCURACY

~ how close is the model output
to the ground truth ?

MODEL SELECTION

9 open-source models

708 Llama 3.1

CodeGemma

Ul

CodeGen.

28 Gemma2 |

W

BENCHMARKS

5 Bug Benchmarks

Bugscu GitBug-Java
BugsInPy Defects4J
Swebench-Lita

+

New, likely unseen data

Github repos in
Java and Python

Our findings show that...

& Data leakage is an especially significant issue for

Defects4J (V1.5)

Smaller models, trained on far less data, seem more prone to

memorization

Bigger and more recent models seem to exhibit lower

memorization of benchmark solutions

If we are not careful with benchmark selection, we risk
reporting inflated model performance due to data leakage

So, we suggest...

Evaluate on
benchmarks with
new data

Monitor leakage risk over time
by computing membership,
NLL and 5-gram matches

Carefully interpret
benchmarks numbers

Check out the
paper! &

36

