
Are Large Language Models 
Memorizing Bug Benchmarks?

Daniel 
Ramos

Claudia
Mamede

Kush
Jain

Paulo
Canelas

Catarina
Gamboa

Claire
Le Goues



Large Language Models are everywhere yet there is still a 
big gap between benchmark performance and reality

2



Large Language Models are everywhere yet there is still a 
big gap between benchmark performance and reality

3

Codegen-6B for bug repair
Prompt

Defects4J, Bug 39 (in Lang project)



Defects4J, Bug 39 (in Lang project)

Codegen-6B  for next token prediction
Prompt

Generated

4

Codegen-6B for bug repair

Large Language Models are everywhere yet there is still a 
big gap between benchmark performance and reality



Defects4J, Bug 39 (in Lang project)

5

Defects4J, Bug 39 (in Lang project)

Prompt

Generated

Codegen-6B for bug repair

Large Language Models are everywhere yet there is still a 
big gap between benchmark performance and reality

Original fix file



Defects4J, Bug 39 (in Lang project)

6

Prompt

Generated

Codegen-6B for bug repair

Large Language Models are everywhere yet there is still a 
big gap between benchmark performance and reality

Original fix file



Defects4J, Bug 39 (in Lang project)

7

Prompt

Generated

Codegen-6B for bug repair

Large Language Models are everywhere yet there is still a 
big gap between benchmark performance and reality

Original fix file



8

Memorization often happens due to data leakage which is 
hard to detect and quantify 🥹

Xu, Ruijie, et al. "Benchmarking benchmark leakage in large language models." arXiv preprint arXiv:2404.18824 (2024).
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We designed an experimental setup to detect 
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CodeGen

Gemma 2

Llama 3.1

Gemma22B

70B

(…)

CodeLLama

CodeGemma

Mistral

9 open-source models

BENCHMARKS

5 Bug Benchmarks

BugsC++

Defects4JBugsInPy

GitBug-Java

Swebench-Lite

New, likely unseen data

Github repos in 
Java and Python
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All benchmarks were part of The Stack to some degree. MEMBERSHIP

Dataset Year
Membership (%)

v1.0 v2.0 v2.1

Defects4J 2019 80.0 80.0 80.0

BugsInPy 2020 94.1 64.7 64.7

BugsC++ 2021 60.9 60.9 65.2

Gitbug-Java 2023 61.1 42.6 38.9

SweBench-Lite 2024 83.3 91.7 83.3

Our findings show that…
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All benchmarks were part of The Stack to some degree. MEMBERSHIP

👎 D4J, SWEBench Lite 👍 Gitbug-Java
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NEG LOG LIKELIHOOD

Our findings show that…
All benchmarks were part of The Stack to some degree. MEMBERSHIP

👍 New and unseen data, Gitbug-Java

Prominent benchmarks elicit lower NLLs across all models.

👎 D4J, SWEBench Lite
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Prominent benchmarks elicit lower NLLs across all models.NEG LOG LIKELIHOOD

Our findings show that…
All benchmarks were part of The Stack to some degree. MEMBERSHIP

👍 Models are less familiar with new and unseen 
data than older benchmarks. (↑ NLL)

🚩 Potential memorization signals. 
It is ~5x more familiar with D4J than newer data.
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Prominent benchmarks elicit lower NLLs across all models.NEG LOG LIKELIHOOD

Our findings show that…
All benchmarks were part of The Stack to some degree. MEMBERSHIP

👍 Models are less familiar with new and unseen 
data than older benchmarks. (↑ NLL)

✨ More consistent behavior across 
benchmarks.
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🙁 Data leakage is an especially significant issue for 
Defects4J (V1.5)

Smaller models, trained on far less data, seem more prone to 
memorization

Bigger and more recent models seem to exhibit lower 
memorization of benchmark solutions

Our findings show that…



33

If we are not careful with benchmark selection, we risk 
reporting inflated model performance due to data leakage
So, we suggest…

Evaluate on 
benchmarks with 

new data
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Carefully interpret 
benchmarks numbers

Monitor leakage risk over time 
by computing membership,
NLL and 5-gram matches

If we are not careful with benchmark selection, we risk 
reporting inflated model performance due to data leakage

Evaluate on 
benchmarks with 

new data

So, we suggest…
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Check out the 
paper! 😜


